220 research outputs found

    Utilising Uracil DNA Glycosylase to detect the presence of 5-Methylcytosine

    No full text
    DNA is regularly subjected to endogenous and exogenous reagents that cause mutations that can be detrimental to a cell if they are not repaired. One class of enzymes responsible for DNA repair is the family of DNA glycosylases and their role is to remove damaged bases. Uracil DNA Glycosylase (UDG) is a member of this family and is highly specific, removing only uracil, an RNA base, from DNA. Uracil arises in DNA through misincorporation of deoxyuridine monophosphate (dUMP) creating an A.U base pair, or through deamination of cytosine resulting in a G.U base pair. Though UDG acts on A.U pairs, this is not it’s primarily role as A.U pairings are not mutagenic. However the G.U mispair is highly mutagenic and leads to a G.C to A.T transition on subsequent rounds of replication. UDG only reacts with uracil and has no activity at thymine since the 5-methyl group on the base is excluded from the active site. This thesis examines mutants of UDG that can cleave cytosine but not 5-methylcytosine. Methylation of cytosine at CpG sites leads to gene silencing and is an important epigenetic signal. Knowing the methylation state of cytosines will therefore be important for understanding gene control and may be beneficial for treating many diseases. The most common method for detecting cytosine methylation uses a bisulphite reaction followed by normal DNA sequencing methods. This process has several drawbacks and the aim of this work is to create an enzyme that is capable of distinguishing between5-methylcytosine and cytosine. It has been reported that mutation of a critical asparagine in UDG to an aspartate allows the enzyme to accommodate cytosine into its active site; generating a cytosine DNA glycosylase (CDG). Using the natural ability of UDG to distinguish between uracil and thymine due to the presence of the 5-methyl group, we hypothesised that the mutant enzyme should be able to discriminate between5-methylcytosine and cytosine, which differ by the presence or absence of a methyl group in the same position. E. coli and human CDGs were prepared and their ability to remove cytosine or 5-methylcytosine examined when placed in different sequence contexts. hCDG was generated through complete gene synthesis of hUDG followed by the N204D mutation. The corresponding mutation in E.coli (N123D) generates a highly cytotoxic enzyme that cannot even be cloned in pUC19. As L191 aids base flipping, mutation to alanine (L191A) renders the enzyme inactive; activity can then be rescued using a bulky synthetic nucleoside that occupies the base pair and forces the target base into an extrahelical conformation. The L191A mutation was followed by N123D to generate an expressible and functional eCDG, denoted eCYDG. We demonstrate that these mutants have cytosine glycosylase activity when the cytosine is mispaired or unpaired, but not when paired with guanine, and show no activity against5-methylcytosine in any context. The activity of these CDGs varies with the stability of the base pair, with the fastest cleavage rates being obtained with the least stable base pairs, and also varies with the local sequence context. As CDGs are able to discriminate between cytosine and 5-methylcytosine we began development of a real-time PCR assay for detection of 5-methylcytosine. This employed a hexaethylene glycol (HEG) linker opposite the target cytosine, as this produces one of the fastest cleavage rates and cannot be read by a DNA polymerase

    Approaches and considerations for the assessment of immunotoxicity for environmental chemicals: A workshop summary

    Get PDF
    AbstractAs experience is gained with toxicology testing and as new assays and technologies are developed, it is critical for stakeholders to discuss opportunities to advance our overall testing strategies. To facilitate these discussions, a workshop on practices for assessing immunotoxicity for environmental chemicals was held with the goal of sharing perspectives on immunotoxicity testing strategies and experiences, developmental immunotoxicity (DIT), and integrated and alternative approaches to immunotoxicity testing. Experiences across the chemical and pharmaceutical industries suggested that standard toxicity studies, combined with triggered-based testing approaches, represent an effective and efficient approach to evaluate immunotoxic potential. Additionally, discussions on study design, critical windows, and new guideline approaches and experiences identified important factors to consider before initiating DIT evaluations including assay choice and timing and the impact of existing adult data. Participants agreed that integrating endpoints into standard repeat-dose studies should be considered for fulfilling any immunotoxicity testing requirements, while also maximizing information and reducing animal use. Participants also acknowledged that in vitro evaluation of immunosuppression is complex and may require the use of multiple assays that are still being developed. These workshop discussions should contribute to developing an effective but more resource and animal efficient approach for evaluating chemical immunotoxicity

    Maternal nutrition modifies trophoblast giant cell phenotype and fetal growth in mice

    Get PDF
    Mammalian placentation is dependent upon the action of trophoblast cells at the time of implantation. Appropriate fetal growth, regulated by maternal nutrition and nutrient transport across the placenta, is a critical factor for adult offspring long-term health. We have demonstrated that a mouse maternal low-protein diet (LPD) fed exclusively during preimplantation development (Emb-LPD) increases offspring growth but programmes adult cardiovascular and metabolic disease. In this study, we investigate the impact of maternal nutrition on post-implantation trophoblast phenotype and fetal growth. Ectoplacental cone explants were isolated at day 8 of gestation from female mice fed either normal protein diet (NPD: 18% casein), LPD (9% casein) or Emb-LPD and cultured in vitro. We observed enhanced spreading and cell division within proliferative and secondary trophoblast giant cells (TGCs) emerging from explants isolated from LPD-fed females when compared with NPD and Emb-LPD explants after 24 and 48 h. Moreover, both LPD and Emb-LPD explants showed substantial expansion of TGC area during 24-48 h, not observed in NPD. No difference in invasive capacity was observed between treatments using Matrigel transwell migration assays. At day 17 of gestation, LPD- and Emb-LPD-fed conceptuses displayed smaller placentas and larger fetuses respectively, resulting in increased fetal:placental ratios in both groups compared with NPD conceptuses. Analysis of placental and yolk sac nutrient signalling within the mammalian target of rapamycin complex 1 pathway revealed similar levels of total and phosphorylated downstream targets across groups. These data demonstrate that early post-implantation embryos modify trophoblast phenotype to regulate fetal growth under conditions of poor maternal nutrition

    Air pollution trends in the EMEP region between 1990 and 2012

    Get PDF
    The present report synthesises the main features of the evolution over the 1990-2012 time period of the concentration and deposition of air pollutants relevant in the context of the Convention on Long-range Transboundary Air Pollution: (i) ozone, (ii) sulfur and nitrogen compounds and particulate matter, (iii) heavy metals and persistent organic pollutants. It is based on observations gathered in State Parties to the Convention within the EMEP monitoring network of regional background stations, as well as relevant modelling initiatives. Joint Report of: EMEP Task Force on Measurements and Modelling (TFMM), Chemical Co-ordinating Centre (CCC), Meteorological Synthesizing Centre-East (MSC-E), Meteorological Synthesizing Centre-West (MSC-W)

    Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma

    Get PDF
    Genome-wide association studies (GWAS) have transformed our understanding of susceptibility to multiple myeloma (MM), but much of the heritability remains unexplained. We report a new GWAS, a meta-analysis with previous GWAS and a replication series, totalling 9974 MM cases and 247,556 controls of European ancestry. Collectively, these data provide evidence for six new MM risk loci, bringing the total number to 23. Integration of information from gene expression, epigenetic profiling and in situ Hi-C data for the 23 risk loci implicate disruption of developmental transcriptional regulators as a basis of MM susceptibility, compatible with altered B-cell differentiation as a key mechanism. Dysregulation of autophagy/apoptosis and cell cycle signalling feature as recurrently perturbed pathways. Our findings provide further insight into the biological basis of MM.</p

    Impact of current and scaled up levels of Hepatitis C (HCV) prevention and treatment interventions for people who inject drugs in three UK settings – what is required to achieve the WHO’s HCV elimination targets?

    Get PDF
    Aims: We estimate the impact of existing high coverage needle and syringe provision (HCNSP, defined as obtaining more than one sterile needle and syringe per injection reported) and opioid substitution therapy (OST) on hepatitis C virus (HCV) transmission among people who inject drugs (PWID) in three United Kingdom (UK) settings. We determine required scale-up of interventions, including HCV treatment, needed to reach the World Health Organisation (WHO) target of reducing HCV incidence by 90% by 2030. Design HCV transmission modelling utilising UK empirical estimates for effect of OST and/or HCNSP on individual risk of HCV acquisition Setting Three UK cities with varying HCV antibody prevalence (Bristol 60%, Dundee 46%, Walsall 32%), OST (72-81%), and HCNSP coverage (28-56%). Measurements Relative change in new HCV infections over 2016-2030 if current interventions were stopped. Scale-up of HCNSP, OST and HCV treatment required to achieve the WHO elimination target. Findings Removing HCNSP or OST would increase the number of new HCV infections over 2016-2030 by 23-64% and 92-483%, respectively. Conversely, scaling-up these interventions to 80% coverage could achieve a 29% or 49% reduction in Bristol and Walsall, respectively, whereas Dundee achieves a 90% decrease in incidence with current levels of intervention because of existing high levels of HCV treatment (47-58 treatments per 1000 PWID). If OST and HCNSP are scaled-up, Walsall and Bristol can achieve the same impact by treating 14 or 40 per 1000 PWID annually, respectively (currently 1-3 and 6-12 treatments per 1000 PWID), while 18 and 43 treatments per 1000 PWID would be required if OST and HCNSP are not scaled-up. Conclusions Current opioid substitution therapy and high coverage needle and syringe provision coverage is averting substantial Hepatitis C transmission in the United Kingdom. Maintaining this coverage while initiating current injectors on treatment can reduce incidence by 90% by 2030

    Association between TCF7L2 gene polymorphisms and susceptibility to Type 2 Diabetes Mellitus: a large Human Genome Epidemiology (HuGE) review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transcription factor 7-like 2 (<it>TCF7L2</it>) has been shown to be associated with type 2 diabetes mellitus (T2MD) in multiple ethnic groups in the past two years, but, contradictory results were reported for Chinese and Pima Indian populations. The authors then performed a large meta-analysis of 36 studies examining the association of type 2 diabetes mellitus (T2DM) with polymorphisms in the <it>TCF7L2 </it>gene in various ethnicities, containing rs7903146 C-to-T (IVS3C>T), rs7901695 T-to-C (IVS3T>C), a rs12255372 G-to-T (IVS4G>T), and rs11196205 G-to-C (IVS4G>C) polymorphisms and to evaluate the size of gene effect and the possible genetic mode of action.</p> <p>Methods</p> <p>Literature-based searching was conducted to collect data and three methods, that is, fixed-effects, random-effects and Bayesian multivariate mete-analysis, were performed to pool the odds ratio (<it>OR</it>). Publication bias and study-between heterogeneity were also examined.</p> <p>Results</p> <p>The studies included 35,843 cases of T2DM and 39,123 controls, using mainly primary data. For T2DM and IVS3C>T polymorphism, the Bayesian <it>OR </it>for TT homozygotes and TC heterozygotes versus CC homozygote was 1.968 (95% credible interval (<it>CrI</it>): 1.790, 2.157), 1.406 (95% <it>CrI</it>: 1.341, 1.476), respectively, and the population attributable risk (PAR) for the TT/TC genotypes of this variant is 16.9% for overall. For T2DM and IVS4G>T polymorphism, TT homozygotes and TG heterozygotes versus GG homozygote was 1.885 (95%<it>CrI</it>: 1.698, 2.088), 1.360 (95% <it>CrI</it>: 1.291, 1.433), respectively. Four <it>OR</it>s among these two polymorphisms all yielded significant between-study heterogeneity (P < 0.05) and the main source of heterogeneity was ethnic differences. Data also showed significant associations between T2DM and the other two polymorphisms, but with low heterogeneity (<it>P </it>> 0.10). Pooled <it>OR</it>s fit a codominant, multiplicative genetic model for all the four polymorphisms of <it>TCF7L2 </it>gene, and this model was also confirmed in different ethnic populations when stratification of IVS3C>T and IVS4G>T polymorphisms except for Africans, where a dominant, additive genetic mode is suggested for IVS3C>T polymorphism.</p> <p>Conclusion</p> <p>This meta-analysis demonstrates that four variants of <it>TCF7L2 </it>gene are all associated with T2DM, and indicates a multiplicative genetic model for all the four polymorphisms, as well as suggests the <it>TCF7L2 </it>gene involved in near 1/5 of all T2MD. Potential gene-gene and gene-environmental interactions by which common variants in the <it>TCF7L2 </it>gene influence the risk of T2MD need further exploration.</p

    Functional dissection of inherited non-coding variation influencing multiple myeloma risk

    Get PDF
    Funding Information: This work was supported by grants from the Knut and Alice Wallenberg Foundation (2012.0193 and 2017.0436), the Swedish Research Council (2017-02023 and 2018-00424), the Swedish Cancer Society (2017/265), the Nordic Cancer Union (R217-A13329-18-S65), Arne and Inga-Britt Lundberg’s Stiftelse (2017-0055), European Research Council (EU-MSCA-COFUND 754299 CanFaster), Myeloma UK and Cancer Research UK (C1298/A8362), The National Institute of Health (R01 DK103794 and R01HL146500), the New York Stem Cell Foundation, a gift from the Lodish Family to Boston Children’s Hospital, and Mr. Ralph Stockwell. We thank Ellinor Johnsson for her assistance between 2011 and 2020. We are indebted to the patients who participated in the study. Publisher Copyright: © 2022, The Author(s).Thousands of non-coding variants have been associated with increased risk of human diseases, yet the causal variants and their mechanisms-of-action remain obscure. In an integrative study combining massively parallel reporter assays (MPRA), expression analyses (eQTL, meQTL, PCHiC) and chromatin accessibility analyses in primary cells (caQTL), we investigate 1,039 variants associated with multiple myeloma (MM). We demonstrate that MM susceptibility is mediated by gene-regulatory changes in plasma cells and B-cells, and identify putative causal variants at six risk loci (SMARCD3, WAC, ELL2, CDCA7L, CEP120, and PREX1). Notably, three of these variants co-localize with significant plasma cell caQTLs, signaling the presence of causal activity at these precise genomic positions in an endogenous chromosomal context in vivo. Our results provide a systematic functional dissection of risk loci for a hematologic malignancy.Peer reviewe
    corecore