96 research outputs found

    On the role of AGN feedback on the thermal and chemodynamical properties of the hot intra-cluster medium

    Get PDF
    We present an analysis of the properties of the ICM in an extended set of cosmological hydrodynamical simulations of galaxy clusters and groups performed with the TreePM+SPH GADGET-3 code. Besides a set of non-radiative simulations, we carried out two sets of simulations including radiative cooling, star formation, metal enrichment and feedback from supernovae, one of which also accounts for the effect of feedback from AGN resulting from gas accretion onto super-massive black holes. These simulations are analysed with the aim of studying the relative role played by SN and AGN feedback on the general properties of the diffuse hot baryons in galaxy clusters and groups: scaling relations, temperature, entropy and pressure radial profiles, and ICM chemical enrichment. We find that simulations including AGN feedback produce scaling relations that are in good agreement with X-ray observations at all mass scales. However, our simulations are not able to account for the observed diversity between CC and NCC clusters: unlike for observations, we find that temperature and entropy profiles of relaxed and unrelaxed clusters are quite similar and resemble more the observed behaviour of NCC clusters. As for the pattern of metal enrichment, we find that an enhanced level of iron abundance is produced by AGN feedback with respect to the case of purely SN feedback. As a result, while simulations including AGN produce values of iron abundance in groups in agreement with observations, they over-enrich the ICM in massive clusters. The efficiency of AGN feedback in displacing enriched gas from halos into the inter-galactic medium at high redshift also creates a widespread enrichment in the outskirts of clusters and produces profiles of iron abundance whose slope is in better agreement with observations.Comment: 23 pages, 14 figures, 1 table, accepted for publication in MNRA

    Characterizing Diffused Stellar Light in simulated galaxy clusters

    Full text link
    [Abridged] In this paper, we carry out a detailed analysis of the performance of two different methods to identify the diffuse stellar light in cosmological hydrodynamical simulations of galaxy clusters. One method is based on a dynamical analysis of the stellar component. The second method is closer to techniques commonly employed in observational studies. Both the dynamical method and the method based on the surface brightness limit criterion are applied to the same set of hydrodynamical simulations for a large sample about 80 galaxy clusters. We find significant differences between the ICL and DSC fractions computed with the two corresponding methods, which amounts to about a factor of two for the AGN simulations, and a factor of four for the CSF set. We also find that the inclusion of AGN feedback boosts the DSC and ICL fractions by a factor of 1.5-2, respectively, while leaving the BCG+ICL and BCG+DSC mass fraction almost unchanged. The sum of the BCG and DSC mass stellar mass fraction is found to decrease from ~80 per cent in galaxy groups to ~60 per cent in rich clusters, thus in excess of what found from observational analysis. We identify the average surface brightness limits that yields the ICL fraction from the SBL method close to the DSC fraction from the dynamical method. These surface brightness limits turn out to be brighter in the CSF than in the AGN simulations. This is consistent with the finding that AGN feedback makes BCGs to be less massive and with shallower density profiles than in the CSF simulations. The BCG stellar component, as identified by both methods, are slightly older and more metal-rich than the stars in the diffuse component.Comment: 18 Pages, 15 figures. Matches to MNRAS published versio

    The Overlooked Potential of Generalized Linear Models in Astronomy - I: Binomial Regression

    Get PDF
    Revealing hidden patterns in astronomical data is often the path to fundamental scientific breakthroughs; meanwhile the complexity of scientific inquiry increases as more subtle relationships are sought. Contemporary data analysis problems often elude the capabilities of classical statistical techniques, suggesting the use of cutting edge statistical methods. In this light, astronomers have overlooked a whole family of statistical techniques for exploratory data analysis and robust regression, the so-called Generalized Linear Models (GLMs). In this paper -- the first in a series aimed at illustrating the power of these methods in astronomical applications -- we elucidate the potential of a particular class of GLMs for handling binary/binomial data, the so-called logit and probit regression techniques, from both a maximum likelihood and a Bayesian perspective. As a case in point, we present the use of these GLMs to explore the conditions of star formation activity and metal enrichment in primordial minihaloes from cosmological hydro-simulations including detailed chemistry, gas physics, and stellar feedback. We predict that for a dark mini-halo with metallicity 1.3×104Z\approx 1.3 \times 10^{-4} Z_{\bigodot}, an increase of 1.2×1021.2 \times 10^{-2} in the gas molecular fraction, increases the probability of star formation occurrence by a factor of 75%. Finally, we highlight the use of receiver operating characteristic curves as a diagnostic for binary classifiers, and ultimately we use these to demonstrate the competitive predictive performance of GLMs against the popular technique of artificial neural networks.Comment: 20 pages, 10 figures, 3 tables, accepted for publication in Astronomy and Computin

    The Overlooked Potential of Generalized Linear Models in Astronomy-III: Bayesian Negative Binomial Regression and Globular Cluster Populations

    Get PDF
    In this paper, the third in a series illustrating the power of generalized linear models (GLMs) for the astronomical community, we elucidate the potential of the class of GLMs which handles count data. The size of a galaxy's globular cluster population NGCN_{\rm GC} is a prolonged puzzle in the astronomical literature. It falls in the category of count data analysis, yet it is usually modelled as if it were a continuous response variable. We have developed a Bayesian negative binomial regression model to study the connection between NGCN_{\rm GC} and the following galaxy properties: central black hole mass, dynamical bulge mass, bulge velocity dispersion, and absolute visual magnitude. The methodology introduced herein naturally accounts for heteroscedasticity, intrinsic scatter, errors in measurements in both axes (either discrete or continuous), and allows modelling the population of globular clusters on their natural scale as a non-negative integer variable. Prediction intervals of 99% around the trend for expected NGCN_{\rm GC}comfortably envelope the data, notably including the Milky Way, which has hitherto been considered a problematic outlier. Finally, we demonstrate how random intercept models can incorporate information of each particular galaxy morphological type. Bayesian variable selection methodology allows for automatically identifying galaxy types with different productions of GCs, suggesting that on average S0 galaxies have a GC population 35% smaller than other types with similar brightness.Comment: 14 pages, 12 figures. Accepted for publication in MNRA

    A probabilistic approach to emission-line galaxy classification

    Get PDF
    We invoke a Gaussian mixture model (GMM) to jointly analyse two traditional emission-line classification schemes of galaxy ionization sources: the Baldwin-Phillips-Terlevich (BPT) and WHα\rm W_{H\alpha} vs. [NII]/Hα\alpha (WHAN) diagrams, using spectroscopic data from the Sloan Digital Sky Survey Data Release 7 and SEAGal/STARLIGHT datasets. We apply a GMM to empirically define classes of galaxies in a three-dimensional space spanned by the log\log [OIII]/Hβ\beta, log\log [NII]/Hα\alpha, and log\log EW(Hα{\alpha}), optical parameters. The best-fit GMM based on several statistical criteria suggests a solution around four Gaussian components (GCs), which are capable to explain up to 97 per cent of the data variance. Using elements of information theory, we compare each GC to their respective astronomical counterpart. GC1 and GC4 are associated with star-forming galaxies, suggesting the need to define a new starburst subgroup. GC2 is associated with BPT's Active Galaxy Nuclei (AGN) class and WHAN's weak AGN class. GC3 is associated with BPT's composite class and WHAN's strong AGN class. Conversely, there is no statistical evidence -- based on four GCs -- for the existence of a Seyfert/LINER dichotomy in our sample. Notwithstanding, the inclusion of an additional GC5 unravels it. The GC5 appears associated to the LINER and Passive galaxies on the BPT and WHAN diagrams respectively. Subtleties aside, we demonstrate the potential of our methodology to recover/unravel different objects inside the wilderness of astronomical datasets, without lacking the ability to convey physically interpretable results. The probabilistic classifications from the GMM analysis are publicly available within the COINtoolbox (https://cointoolbox.github.io/GMM\_Catalogue/).Comment: Accepted for publication in MNRA

    Mucopolysaccharidosis IIIB, a lysosomal storage disease, triggers a pathogenic CNS autoimmune response

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently, using a mouse model of mucopolysaccharidosis (MPS) IIIB, a lysosomal storage disease with severe neurological deterioration, we showed that MPS IIIB neuropathology is accompanied by a robust neuroinflammatory response of unknown consequence. This study was to assess whether MPS IIIB lymphocytes are pathogenic.</p> <p>Methods</p> <p>Lymphocytes from MPS IIIB mice were adoptively transferred to naïve wild-type mice. The recipient animals were then evaluated for signs of disease and inflammation in the central nervous system.</p> <p>Results</p> <p>Our results show for the first time, that lymphocytes isolated from MPS IIIB mice caused a mild paralytic disease when they were injected systemically into naïve wild-type mice. This disease is characterized by mild tail and lower trunk weakness with delayed weight gain. The MPS IIIB lymphocytes also trigger neuroinflammation within the CNS of recipient mice characterized by an increase in transcripts of IL2, IL4, IL5, IL17, TNFα, IFNα and Ifi30, and intraparenchymal lymphocyte infiltration.</p> <p>Conclusions</p> <p>Our data suggest that an autoimmune response directed at CNS components contributes to MPS IIIB neuropathology independent of lysosomal storage pathology. Adoptive transfer of purified T-cells will be needed in future studies to identify specific effector T-cells in MPS IIIB neuroimmune pathogenesis.</p

    Maximizing the impact of malaria funding through allocative efficiency: using the right interventions in the right locations.

    Full text link
    BACKGROUND: The high burden of malaria and limited funding means there is a necessity to maximize the allocative efficiency of malaria control programmes. Quantitative tools are urgently needed to guide budget allocation decisions. METHODS: A geospatial epidemic model was coupled with costing data and an optimization algorithm to estimate the optimal allocation of budgeted and projected funds across all malaria intervention approaches. Interventions included long-lasting insecticide-treated nets (LLINs), indoor residual spraying (IRS), intermittent presumptive treatment during pregnancy (IPTp), seasonal mass chemoprevention in children (SMC), larval source management (LSM), mass drug administration (MDA), and behavioural change communication (BCC). The model was applied to six geopolitical regions of Nigeria in isolation and also the nation as a whole to minimize incidence and malaria-attributable mortality. RESULTS: Allocative efficiency gains could avert approximately 84,000 deaths or 15.7 million cases of malaria in Nigeria over 5 years. With an additional US$300 million available, approximately 134,000 deaths or 37.3 million cases of malaria could be prevented over 5 years. Priority funding should go to LLINs, IPTp and BCC programmes, and SMC should be expanded in seasonal areas. To minimize mortality, treatment expansion is critical and prioritized over some LLIN funding, while to minimize incidence, LLIN funding remained a priority. For areas with lower rainfall, LSM is prioritized over IRS but MDA is not recommended unless all other programmes are established. CONCLUSIONS: Substantial reductions in malaria morbidity and mortality can be made by optimal targeting of investments to the right malaria interventions in the right areas

    Optima Nutrition: an allocative efficiency tool to reduce childhood stunting by better targeting of nutrition-related interventions.

    Full text link
    BACKGROUND: Child stunting due to chronic malnutrition is a major problem in low- and middle-income countries due, in part, to inadequate nutrition-related practices and insufficient access to services. Limited budgets for nutritional interventions mean that available resources must be targeted in the most cost-effective manner to have the greatest impact. Quantitative tools can help guide budget allocation decisions. METHODS: The Optima approach is an established framework to conduct resource allocation optimization analyses. We applied this approach to develop a new tool, 'Optima Nutrition', for conducting allocative efficiency analyses that address childhood stunting. At the core of the Optima approach is an epidemiological model for assessing the burden of disease; we use an adapted version of the Lives Saved Tool (LiST). Six nutritional interventions have been included in the first release of the tool: antenatal micronutrient supplementation, balanced energy-protein supplementation, exclusive breastfeeding promotion, promotion of improved infant and young child feeding (IYCF) practices, public provision of complementary foods, and vitamin A supplementation. To demonstrate the use of this tool, we applied it to evaluate the optimal allocation of resources in 7 districts in Bangladesh, using both publicly available data (such as through DHS) and data from a complementary costing study. RESULTS: Optima Nutrition can be used to estimate how to target resources to improve nutrition outcomes. Specifically, for the Bangladesh example, despite only limited nutrition-related funding available (an estimated $0.75 per person in need per year), even without any extra resources, better targeting of investments in nutrition programming could increase the cumulative number of children living without stunting by 1.3 million (an extra 5%) by 2030 compared to the current resource allocation. To minimize stunting, priority interventions should include promotion of improved IYCF practices as well as vitamin A supplementation. Once these programs are adequately funded, the public provision of complementary foods should be funded as the next priority. Programmatic efforts should give greatest emphasis to the regions of Dhaka and Chittagong, which have the greatest number of stunted children. CONCLUSIONS: A resource optimization tool can provide important guidance for targeting nutrition investments to achieve greater impact

    The overlooked potential of Generalized Linear Models in astronomy, I: Binomial regression

    Get PDF
    Revealing hidden patterns in astronomical data is often the path to fundamental scientific breakthroughs; meanwhile the complexity of scientific inquiry increases as more subtle relationships are sought. Contemporary data analysis problems often elude the capabilities of classical statistical techniques, suggesting the use of cutting edge statistical methods. In this light, astronomers have overlooked a whole family of statistical techniques for exploratory data analysis and robust regression, the so-called Generalized Linear Models (GLMs). In this paper – the first in a series aimed at illustrating the power of these methods in astronomical applications – we elucidate the potential of a particular class of GLMs for handling binary/binomial data, the so-called logit and probit regression techniques, from both a maximum likelihood and a Bayesian perspective. As a case in point, we present the use of these GLMs to explore the conditions of star formation activity and metal enrichment in primordial minihaloes from cosmological hydro-simulations including detailed chemistry, gas physics, and stellar feedback. We predict that for a dark mini-halo with metallicity ≈ 1.3 × 10−4ZJ, an increase of 1.2 × 10−2 in the gas molecular fraction, increases the probability of star formation occurrence by a factor of 75%. Finally, we highlight the use of receiver operating characteristic curves as a diagnostic for binary classifiers, and ultimately we use these to demonstrate the competitive predictive performance of GLMs against the popular technique of artificial neural networks

    Simulation-based marginal likelihood for cluster strong lensing cosmology

    Get PDF
    Comparisons between observed and predicted strong lensing properties of galaxy clusters have been routinely used to claim either tension or consistency with \u39b cold dark matter cosmology. However, standard approaches to such cosmological tests are unable to quantify the preference for one cosmology over another. We advocate approximating the relevant Bayes factor using a marginal likelihood that is based on the following summary statistic: the posterior probability distribution function for the parameters of the scaling relation between Einstein radii and cluster mass, \u3b1 and \u3b2. We demonstrate, for the first time, a method of estimating the marginal likelihood using the X-ray selected z > 0.5 Massive Cluster Survey clusters as a case in point and employing both N-body and hydrodynamic simulations of clusters. We investigate the uncertainty in this estimate and consequential ability to compare competing cosmologies, which arises from incomplete descriptions of baryonic processes, discrepancies in cluster selection criteria, redshift distribution and dynamical state. The relation between triaxial cluster masses at various overdensities provides a promising alternative to the strong lensing test
    corecore