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Abstract

Revealing hidden patterns in astronomical data is often the path to fundamental scientific breakthroughs;
meanwhile the complexity of scientific inquiry increases as more subtle relationships are sought. Contem-
porary data analysis problems often elude the capabilities of classical statistical techniques, suggesting the
use of cutting edge statistical methods. In this light, astronomers have overlooked a whole family of statisti-
cal techniques for exploratory data analysis and robust regression, the so-called Generalized Linear Models
(GLMs). In this paper – the first in a series aimed at illustrating the power of these methods in astronomical
applications – we elucidate the potential of a particular class of GLMs for handling binary/binomial data, the
so-called logit and probit regression techniques, from both a maximum likelihood and a Bayesian perspective.
As a case in point, we present the use of these GLMs to explore the conditions of star formation activity and
metal enrichment in primordial minihaloes from cosmological hydro-simulations including detailed chem-
istry, gas physics, and stellar feedback. We predict that for a dark mini-halo with metallicity ≈ 1.3× 10−4Z⊙,
an increase of 1.2 × 10−2 in the gas molecular fraction, increases the probability of star formation occurrence
by a factor of 75%. Finally, we highlight the use of receiver operating characteristic curves as a diagnostic
for binary classifiers, and ultimately we use these to demonstrate the competitive predictive performance of
GLMs against the popular technique of artificial neural networks.

Keywords: cosmology: first stars; methods: statistical; stars: Population III

1. Introduction

The simple linear regression model has long been
a mainstay of astronomical data analysis, the archety-
pal problem being to determine the line of best fit

Email addresses: rafael.2706@gmail.com (R S. de
Souza), dr.ewan.cameron@gmail.com (E. Cameron)

through Hubble’s diagram (Hubble, 1929). In this
approach, the expected value of the response vari-
able, Y ∈ IRm, is supposed linearly dependent on its
coefficients, β ∈ IRn, acting upon the set of n predic-
tor variables, X ∈ IRn×m,

E(Y) = (βT X)T . (1)

Preprint submitted to Astronomy and Computing August 23, 2018

ar
X

iv
:1

40
9.

76
96

v2
  [

as
tr

o-
ph

.I
M

] 
 4

 A
pr

 2
01

5
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ELTE Digital Institutional Repository (EDIT)

https://core.ac.uk/display/333613810?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The least-squares fitting procedure for performing this
type of regression (Isobe et al. 1990) relies on a num-
ber of distributional assumptions which fail to hold
when the data to be modelled come from exponential
family distributions other than the Normal/Gaussian
(Hardin and Hilbe, 2012; Hilbe, 2014). For instance,
if the response variable takes the form of Poisson dis-
tributed count data (e.g. photon counts from a CCD),
then the equidispersion property of the Poisson, which
prescribes a local variance equal to its conditional
mean, will directly violate the key linear regression
assumption of homoscedasticity (a common global
variance independent of the linear predictors). More-
over, adopting a simple linear regression in this con-
text means to ignore another defining feature of the
Poisson: its ability to model data with only non-negative
integers. Similar concerns arise for modelling Bernoulli
and binomial distributed data (i.e., on/off, yes/no)
where regression methods optimized for continuous
and unbounded response variables are of limited as-
sistance (Hilbe, 2009).

Yet, data analysis challenges of this sort arise rou-
tinely in the course of astronomical research: for ex-
ample, in efforts to characterize exoplanet multiplic-
ity as a function of host multiplicity and orbital sep-
aration (Poisson distributed data; Wang et al. 2014),
or to model the dependence of the galaxy bar frac-
tion on total stellar mass and redshift (Bernoulli dis-
tributed data; Melvin et al. 2014). For such regres-
sion problems there is a powerful solution already
widely-used in medical research (e.g., Lindsey, 1999),
finance (e.g., de Jong and Heller, 2008), and health-
care (e.g., Griswold et al., 2004) settings, but vastly
under-utilized to-date in astronomy. This is known
as Generalized Linear Models (GLMs). Basic GLMs
include Normal or Gaussian regression, gamma and
inverse Gaussian models, and the discrete response
binomial, Poisson and negative binomial models.

1.1. Generalized Linear Models
The class of GLMs, first developed by Nelder and

Wedderburn (1972), take a more general form than in
Eq. 1:

E(Y) = g−1
(
(βT X)T

)
, (2)

with the response variable, Y | βTX, belonging to a
specified distribution from the single parameter ex-
ponential family and g−1(·) providing an appropriate

transformation from the linear predictor, (βT X)T , to
the conditional mean, µ. The inverse of the mean
function, g−1(·), is known as the link function, g(·).
Nelder and Wedderburn (1972) and McCullagh and
Nelder (1989) laid the foundations of the GLM es-
timation algorithm, which is a subset of maximum
likelihood estimation. The algorithm they devised in
early software development is for the most part still
used today in the majority of GLM implementations–
both in commercial statistical packages (e.g. SPSS
and SAS) and in freeware-type packages (e.g. R and
Python).

GLMs have received a great deal of attention in
the statistical literature. Variations and extensions
of the traditional algorithm have resulted in method-
ologies, such as: generalized estimating equations
(Liang and Zeger, 1986); generalized additive mod-
els (Hastie and Tibshirani, 1986); fixed and random
effects regression (Breslow and Clayton, 1993); quasi-
least squares regression (Shults and Hilbe, 2014); and
more. Bayesian statisticians working within the GLM
framework have explored Gibbs sampling techniques
for posterior sampling (Albert and Chib, 1993), var-
ious issues of prior choice (Gelman et al., 2008) and
prior-sensitivity analysis (Doss and Narasimhan, 1994),
developed errors-in-variables treatments (for the case
of errors in the predictor variables; e.g. Richardson
and Gilks 1993; Mallick and Gelfand 1996), and de-
vised Gaussian process-based strategies for the use
of GLMs in geospatial statistics (Diggle et al., 2002).
The GLM methodology thus stands at the base of a
wide number of contemporary statistical methods.

Despite the ubiquitous nature of GLMs in gen-
eral statistical applications, there have been only a
handful of astronomical studies applying GLM tech-
niques such as logistic regression (e.g. Raichoor and
Andreon 2012, 2014; Lansbury et al. 2014), Pois-
son regression (e.g. Andreon and Hurn 2010); and
the importance of modelling overdispersion in count
data (as facilitated by the negative binomial GLM)
has only lately become appreciated through cosmo-
logical research (Ata et al., 2015). Hence, in this
series of papers we aim to demonstrate the vast po-
tential of GLMs to assist with both exploratory and
advanced astronomical data analyses through the ap-
plication to a variety of astronomical inference prob-
lems.
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The astronomical case studies explored herein fo-
cus on an investigation of the statistical properties
of baryons inside simulated high-redshift haloes, in-
cluding detailed chemistry, gas physics and stellar
feedback. The response variables are categorical with
two possible outcomes and therefore Bernoulli dis-
tributed. In our particular case, these correspond to
either (i) the presence/absence of star formation ac-
tivity, or (ii) metallicity above/below the critical metal-
licity (Zcrit) associated with the first generation of
stars. The predictor variables are properties of high-
redshift galaxies with continuous domain.

The outline of this paper is as follows. In §2 we
describe the cosmological simulation and the dataset
of halo properties. We describe various forms of bi-
nomial GLM regression in §3. In §4 we present our
analysis of the simulated dataset for the two selected
response variables. In §5 we discuss critical diagnos-
tics of our analysis, and compare our classifications
with those that use artificial neural networks in §6.
Finally, in §7 we summarize our conclusions.

2. Simulations

In order to ascertain the key ingredients that af-
fect star formation in the early Universe, we study
cosmological simulations of high-redshift galaxies and
proto-galaxies. In the following, we describe the sim-
ulated data used to exemplify the unique benefits of
binomial GLM regression for modelling galaxy prop-
erties that are naturally addressed as a dichotomous
problem.

2.1. Runs
The data set used in this work is retrieved from

a cosmological hydro-simulation based on Biffi and
Maio 2013 (see also Maio et al. 2010, 2011; de Souza
et al. 2014). The code employed to run the simu-
lation is gadget-3, a modified version of the paral-
lel N-body, smoothed-particle hydrodynamics code
named gadget-2 (Springel, 2005). The modifications
include: a relevant chemical network to self-consistently
follow the evolution of different atomic and molecu-
lar chemical species (e.g., Yoshida et al., 2003; Maio
et al., 2006, 2007, 2009); metal pollution according
to proper stellar yields and lifetimes for both the pris-
tine population III (Pop III) and the following popu-
lation II/I (Pop II/I) star forming regime (Tornatore

et al., 2007; Maio et al., 2010); radiative gas cool-
ing from molecular, resonant and fine-structure lines
(Maio et al., 2007). The actual stellar population is
determined by the local heavy-element mass fraction
(metallicity, Z) and the existence of a critical thresh-
old Zcrit = 10−4Z⊙1 (e.g., Omukai, 2000; Bromm
et al., 2001) below which Pop III star formation takes
place and above which Pop II/I stars are formed.

The initial matter density field is sampled at red-
shift z = 100 adopting the standard cold dark matter
model with cosmological constant Λ, ΛCDM. The
cosmological parameters at the present time are as-
sumed to be: Ω0,Λ = 0.7, Ω0,m = 0.3, Ω0,b = 0.04,
for cosmological-constant, matter and baryon den-
sity, respectively (e.g., Komatsu et al., 2011). The
expansion parameter at the present day is assumed to
be H0 = 100 h kms−1Mpc−1, with h = 0.7, while the
primordial power spectrum has a slope n = 1 and is
normalized by imposing a mass variance within the
8-kpc/h sphere radius ofσ8 = 0.9. We consider snap-
shots in the range 9 . z . 19, for a cubic volume of
comoving side ∼0.7 Mpc, sampled with 2×3203 par-
ticles per gas and dark-matter species. The resulting
resolution is 42 M⊙h−1 and 275 M�h−1 for gas and
dark matter, respectively.

2.2. Data set
The simulation outputs considered here consist

of six parameters: dark-matter mass, Mdm, gas mass,
Mgas, stellar mass, Mstar, star formation rate, SFR,
metallicity, Z, and gas molecular fraction, xmol. In
addition to the data-set described above, we incorpo-
rate in the analysis the following derived quantities:
gas fraction, fgas≡ Mgas/Mdm, stellar fraction, fstar ≡

Mstar/Mdm and stellar-to-gas mass ratio Mstar/Mgas.
The sample studied in this work is composed of

1680 haloes in the whole redshift range, with about
200 objects at z = 9. The masses of the haloes are
in the range 105M⊙ . Mdm . 108M⊙, with corre-
sponding gas masses between 104−107M⊙. Table 1
summarizes the statistics of the halo parameters con-
tained in the sample. The interested reader can find

1Despite the uncertainties on Zcrit, it is safe to assume values
around Zcrit = 10−4Z⊙, in fact even order-of-magnitude devia-
tions would not change significantly the final results in terms of
star formation and cosmic metal pollution (see details in Maio
et al., 2010).
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in Biffi and Maio (2013) a more detailed discussion
of the thermal and dynamical properties of the pri-
mordial objects analysed in this paper.

3. GLM Regression for Binary Response Data

In preparation for the application of binomial GLM
regression we begin with a discussion of the two most
common link functions: logit and probit (§3.1). Then
we describe three variations on a class of GLMs which
apply to binary response data: the maximum likeli-
hood estimation (MLE) approach with logit link func-
tion (§3.2); and the Bayesian approach with a logit
link function (§3.3) and with a probit link function
amenable to exact Gibbs sampling (§3.4). These will
be applied in the following section (§4) in the con-
text of two specifically chosen astrophysical prob-
lems: i) presence/absence of star formation activity;
ii) gas metallicity below/above Zcrit to discriminate
between Pop III/Pop II/I star formation mode. The
interested reader can find a comprehensive descrip-
tion of the underlying theory behind GLMs in Zuur
et al. (2013).

3.1. Logit and probit regression
The Bernoulli distribution describes a process in

which there are only two possible outcomes: suc-
cess or failure (yes/no, on/off, red/blue, etc.; typi-
cally coded as 1/0)–the former occurring with prob-
ability, p, and the other with probability, 1 − p. For
multiple independent Bernoulli observations the to-
tal success count, k, follows a binomial distribution2,
P(k) =

(
n
k

)
pk(1 − p)n−k. Both distributions are mem-

bers of the exponential family (supposing the number
of binomial trials, n, is known and fixed) and thus
may be used (equivalently) as the response distribu-
tion for modelling binary response data in the GLM
framework.

The link function chosen in this case is designed
to ensure a bijection3 between the (−∞,∞) range of
the linear predictor, (βT X)T , and the (0,1) range of

2See Cameron (2011) for a review of the binomial distribu-
tion and both maximum likelihood and Bayesian approaches to
estimation of confidence/credible intervals on p.

3A function f from a set X to a set Y with the property that,
for every y in Y , there is exactly one x in X such that f (x) = y.

non-trivial probabilities for the binomial population
proportion (the Bernoulli p). To this end there are
two popular choices: the logit function,

g(p) = log
p

1 − p
, (3)

and the probit function,

g(p) = Φ−1(p), (4)

where Φ(·) represents the Normal distribution func-
tion. The choice of link function defining the logit
predicted value, µ,

µT = g−1(βT X) =
exp(βT X)

1 + exp(βT X)
, (5)

or the probit predicted value,

µT = g−1(βT X) = Φ(βT X), (6)

accordingly. Both link functions describe sigmoid
curves smoothly and monotonically increasing from
µ = 0 at βT X = −∞ to µ = 1 at βT X = ∞ with
the greatest rate of change occurring at βT X = 0, as
displayed in Fig 1.

The logit function is most commonly preferred
in clinical research applications where outcomes are
most naturally described in terms of the odds-ratio,

p
1−p (e.g. the relationship between the odds-ratio of
patient recovery/non-recovery and the concentration
of an administered drug); whereas the probit function
is often presented within Bayesian statistical applica-
tions exploiting an associated Gibbs sampling algo-
rithm. Sigmoid curves such as those described by the
logit and probit functions may already be seen in em-
pirical/phenomenological astronomical models: for
example, in describing the fraction of quenched galax-
ies as a function of mass and/or environmental den-
sity (Peng et al., 2010; Rodriguez-Puebla et al., 2014).

A reason for employing logit or probit regression
to model binary response data is to obtain for objects
with only X observations, but no observed Y’s, the
predicted probabilities that the unobserved response
variable has the value 1 indicating “success”, how-
ever that is defined (e.g., ”galaxy is quenched”, ”star
hosts planet”). Both models usually produce similar
probabilities; though probit regression is not as com-
monly used for assessing the relationship of a pre-
dictor to the response since the interpretation of the

4



Variable name Minimum Maximum Mean Standard deviation
Dark-matter mass: Mdm (M⊙) 2.20 ×105 5.59 × 107 2.15 × 106 4.39 × 106

Gas mass: Mgas (M⊙) 1.27 × 104 5.80 × 106 1.39 × 105 4.18 × 105

Stellar mass: Mstar (M⊙) 0 3.45 × 104 2.87 × 102 2.42 × 103

Star formation rate: SFR (M⊙/yr) 0 3.08 × 106 2.17 ×104 1.70 × 105

Metallicity: Z (Z⊙) 0 1.03 × 10−2 1.28 × 10−4 8.49 × 10−4

Gas molecular fraction: xmol 7.53 ×10−6 1.31 × 10−1 2.20 × 10−3 1.18 × 10−2

Gas fraction: fgas≡ Mgas/Mdm 1.66 × 10−2 1.21 × 10−1 4.22 × 10−2 1.87 × 10−2

Stellar fraction: fstar ≡ Mstar/Mdm 0 1.06 × 10−3 1.39 × 10−5 7.92 × 10−5

Stellar-to-gas mass ratio: Mstar/Mgas 0 1.70 × 10−2 1.86 × 10−4 1.14 × 10−3

Table 1: Summary statistics of the halo properties.

exponentiated coefficient of a logit predictor as an
odds ratio is a desirable feature of that model. Pro-
bit regression is normally used when a continuous
variable is dichotomized so that it becomes a binary
response (see Zuur et al., 2013, for an examination
of these and related issues with logit and probit mod-
els from both a frequency and Bayesian perspective).
It is worth noting that, while other well known ma-
chine learning algorithms (e.g., support vector ma-
chines, k-nearest neighbourhood) can be used for bi-
nary classification tasks, their main focus is predic-
tion rather than modelling. In other words, their aim
is to find a functional algorithm f (x) that operates
on x to predict the responses y. GLMs, on the other
hand, represent a data modelling philosophy, which
assumes the sample to be generated by a stochastic
process, e.g., Gamma, Poisson, with Bernoulli being
the case study here. While the former may lead to a
more accurate prediction for complex problems, al-
though there are plenty of GLM extensions for such
cases, the later allows a clearer interpretation of the
relationship between the predictor and response vari-
ables (see §4).

3.2. Maximum-likelihood estimation GLM regression
with logit link function

Despite the growing popularity of Bayesian sta-
tistical analysis in the physical sciences the MLE ap-
proach to GLM fitting remains the default in the ma-
jority of statistical software packages4: for this rea-
son, and its historical significance (cf. the extensive

4Such as the glm in R
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Figure 1: Comparison between logit, solid blue curve and pro-
bit, dotted red curve, link functions g(p).

treatment given by McCullagh and Nelder 1989), we
describe this approach first.

With the likelihood of the dataset fully specified
by the linear predictor, βT X, and the choice of re-
sponse variable distribution and link function of the
GLM, the corresponding likelihood function for re-
gression is both readily tractable and easily evaluated
computationally. Iterative algorithms operating on
the negative log-likelihood, such as the iteratively re-
weighted least squares procedure used by glm (Ven-
ables and Ripley, 2002), thus provide a fast computa-
tional strategy for recovering the MLE solution. The
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output from a standard MLE GLM fitting code will
typically be a list containing: (i) a MLE estimate,
β̂i, for the βi component of each candidate predictor
variable, Xi; (ii) the associated estimate of its stan-
dard error, σ̂βi , from which approximate confidence
intervals (CI) on βi may be obtained using the Nor-
mal distribution function (e.g. a 95% CI: β̂i ± 2σ̂βi);
and (iii) a p-value computed from the Wald test us-
ing (i) and (ii), required for significance testing of the
given predictor variable. The Wald test determines
how significant a predictor variable is, where for the
GLM case it tests the predictor parameter values, β̂,
versus hypothesized values, β0 (often 0 for logistic
models), and is based on MLE. The difference be-
tween β̂ and β0 divided by the standard error, se, of
the residuals follows an approximate Gaussian distri-
bution. For a specific estimate, we have

β̂ − β0

se(β̂)
.
∼ N(0, 1), (7)

where se(β̂) is the standard error of the estimate of β.
A Wald 95% confidence interval for β̂ is given by

β̂ ± 1.96se(β̂), (8)

(see e.g., Pawitan, 2001; Hilbe, 2009). Estimation of
(ii) is by way of the observed information matrix ac-
cording to asymptotic convergence theory for MLE
estimation.

In R the glm procedure may be called to perform
MLE estimation of the logistic regression model us-
ing the general syntax shown in Appendix A.

3.3. Bayesian GLM regression with logit link func-
tion

The bayesglm function in the CRAN5 arm pack-
age is commonly used to estimate Bayesian logistic
models (Gelman and Su, 2014). The code used to
estimate this class of models is based on R’s default
glm function (see Appendix A). Normal and Jef-
freys priors have traditionally been favoured for use
with continuous predictors in logit regression (e.g.
Raftery 1996; Ibrahim and Laud 1991); though more
recently the Cauchy has been strongly promoted as

5http://cran.r-project.org

an optimal default prior (Gelman et al., 2008). It
is also recommended that continuous predictors be
centered if not fully standardized6, if the predictor is
not linearly related to the response; withal, standard-
izing continuous predictors help convergence, when
entered into a Bayesian GLM, since it puts them on
the same scale. Care must always be taken to as-
sure that a default prior’s use with the data makes
sense; to this end visual inspection of mock datasets
generated from the prior–likelihood pairing uncon-
strained by the data can serve as an effective check.
To this end “functional uniform” priors provide an-
other means to limit prior-sensitivity in the shape of
the preferred fitting function; cf. Bornkamp 2012.
For the purposes of the present study we follow the
Cauchy prior recommendations of Gelman et al. (2008).

3.4. Bayesian GLM regression with probit link func-
tion

Use of the probit link function for Bayesian GLM
regression has become a popular choice owing to the
availability of an exact Gibbs sampling algorithm for
this model presented by Albert and Chib (1993). The
novelty of their algorithm is a data augmentation scheme
in which an additional latent variable is added for
each observation having standard Normal distribu-
tion with mean set by the linear predictor, from which
the likelihood of the observed response is determined
according to whether or not this latent variable is
above or below zero. Although the general sampler
of the arm package does not in fact implement the Al-
bert and Chib (1993) scheme, it is important to note
its availability for use in more complex Bayesian hi-
erarchical models built on the GLM framework (e.g.
for the case of errors-in-variable GLM regression with
binary distributions for both predictor and response
variable, such as can arise in comparing the sensi-
tivity of two alternative tests)7. The basic syntax for
using Bayesian probit GLM in R is summarized in
Appendix A. The same criteria for the use of priors

6E.g., transformed to zero sample mean and unit sample
variance as x∗ = (x − µ̂x)/σ̂x, where x∗ is the standardized vari-
able, and µ̂x and σ̂x represent the sample mean and standard
deviation respectively.

7An alternative R function implementing the data augmen-
tation scheme for Bayesian probit regression is available in the
CRAN LearnBayes package (Albert, 2007) as bayes.probit.

6
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that we discussed for logit models above also main-
tain for probit models. However, if the analyst de-
sires to interpret the coefficients in terms of odds or
risk ratios, a logit model must be used, regardless if
the model is based on MLE or Bayesian methods.

4. Application to cosmological simulations

Within this section we demonstrate the applica-
tion of the binomial regression techniques introduced
above to answer questions from an exploratory anal-
ysis of our cosmological hydro-simulation dataset that
could not be addressed by standard linear regression
methods. This is because probability of occurrence
for a binary outcome is bounded between 0 and 1,
while the underlying theory of linear regression al-
lows realizations with values out of this range. Rather
than exhaust all possible techniques for a single dataset,
our aim is to demonstrate practical differences be-
tween distinct types of binary regression: i) Bayesian
vs MLE approach, both with the standard logit link
(§3.2,3.3); ii) Bayesian regression comparing logit
vs probit link functions (§3.3,3.4). In the first case
we consider the star formation activity connection
with a preselected (physically motivated) set of pre-
dictor variables: xmol and Z. Alternatively, in our
later analysis of the metallicity content of the galax-
ies, we use an automatic criterion to select the best
choice of predictor variables among the entire set of
halo features, or in other words the variable combi-
nation that minimizes the Akaike Information Crite-
rion (AIC; Akaike, 1974). For all the following GLM
analyses we quote the maximum likelihood (Lmax),
the AIC as well as the alternative Bayesian Informa-
tion Criterion (BIC; Schwarz, 1978).

4.1. Star formation activity
Here we discuss the connection between star for-

mation activity and the gaseous chemical properties,
xmol and Z of proto-galaxies, using a Bayesian and a
MLE approach with logit link. The formation of the
first metal-free stars in the Universe ended the cos-
mic dark ages (de Souza et al., 2011, 2012; Bromm,
2013; de Souza et al., 2013b; Whalen et al., 2013a,b)
and began the production of elements heavier than
lithium (Maio et al., 2010, 2013; Wise et al., 2014).

0

5

10

15

10-5
10-4 10-3 10-2 10-1

Xmol
A

rc
S

in
h
(Z

×
1

0
8

Z
ʘ
)

No SF SF

Figure 2: Molecular fraction and gas metallicity for all haloes in
the simulation, colour-coded by presence of star-formation ac-
tivity: blue dots indicate no SF and red crosses indicate SF. The
re-scaling and ArcSinh transformation to Z is done in order to
allow a better visualization of the whole range of metallicities,
including the null values.

Thus, a key problem in physical cosmology is to un-
derstand the environmental properties of such objects
(e.g., de Souza et al., 2013a; Biffi and Maio, 2013;
Salvaterra et al., 2013), born out of the pristine con-
ditions leftover by the Big Bang.

As a visual exploration, Figure 2 shows the scat-
ter of xmol and Z coloured according to the presence
of star formation activity. The objects located in the
top left with high Z and very low xmol are strongly
displaced from the general trend, highlighting the ef-
fects of metal enrichment of quiescent galaxies pol-
luted by external sources. The bottom right corner is
not populated because gas with large molecular frac-
tions of xmol ∼ 10−2 or higher would have very short
cooling times, hence would immediately form stars
which pollute the surrounding medium. Therefore,
the larger the deviation from the general trend, the
higher the effects of feedback mechanisms.

Figure 3 represents the distribution of xmol and
Z colour-coded by star formation activity and dis-
played by a box plot. The notches represent a rough
guide of the uncertainty around the median of each
distribution, ±1.58 × IQR/√nob j, with nob j being the
number of objects, and IQR standing for interquartile
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Figure 3: Distribution of molecular fraction and metallicities
for haloes colour-coded by whether they host star-formation
activity or not. Red colour represents haloes with SF and
blue colour haloes with no SF. The bottom and top of the
box show the first and third data quartiles, while the band
inside the box their median. The notches represent a rough
guide of the uncertainty around the median of each distribution,
±1.58× IQR/√nob j, with nob j being the number of objects, and
IQR standing for interquartile range.

range. A visual inspection suggests that xmol plays a
major role in triggering the star formation activity,
in contrast to the lower influence of Z (see e.g., de
Souza et al., 2014). The medians of haloes with and
without star formation are different for both xmol and
Z, indicating they might represent different popula-
tions, which reinforce their choice as predictor vari-
ables for star formation activity.

To perform the GLM analysis, we categorize the
haloes via the binary response variable SFRbin, as
those with (SFR > 0 ) and without (SFR = 0) star for-
mation activity, a binary classification which makes
it suitable for a binomial GLM analysis,

SFRbin =

{
1 or ‘SF’ if SFR > 0,
0 or ‘no SF’ if SFR = 0. (9)

Table 2: β̂i coefficients from MLE and Bayesian (with Cauchy
prior) GLM logit regression analysis with SFRbin as the re-
sponse variable and xmol and Z as predictors. The associated p-
values (P, see§3.2), are listed underneath the coefficients. The
logarithm of the maximum likelihood (Lmax), the AIC and the
BIC for each choice of link function are also shown.

Response variable:
SFRbin

MLE logit Bayes logit
β̂0 −2.51 ± 0.10 −2.50 ± 0.10

(P � 0.001) (P � 0.001)
β̂1 Z −1.15 ± 0.33 −1.05 ± 0.27

(P = 0.0006) (P = 0.0001)
β̂2 xmol 1.05 ± 0.15 1.01 ± 0.14

(P � 0.001) (P � 0.001)

Lmax −452 −452
AIC 909 909
BIC 926 926

The underlying properties that act as predictor vari-
ables are: xmol and Z. We indicate with p the prob-
ability that star formation activity is occurring in a
galaxy. More specifically, p = 1 (0) if a galaxy has
(has no) star formation. The predicted probability π
is then determined by the GLM analysis and com-
pared to observed probability p (for a given decision
boundary), in order to ascertain the method’s perfor-
mance, as explained below. We standardized the pre-
dictors before the GLM analysis in order to amelio-
rate possible collinearity and scaling bias due to units
differences.

Table 2 shows the estimated coefficients and re-
lated p-values8 for the various linear predictors for
both Bayesian and MLE approach with the standard
logit link.

The coefficients for the logit model represent the
log of the odds ratio for SF activity. Since the pre-
dictors are scaled, it allows for performing a rela-
tive comparison between variables measured in dif-
ferent units. A one σ increase in the halo metallicity

8 p−values measure the significance of the term associated
to the fitted coefficients, β̂i. p-values ≤ 0.05 imply that β̂i are
significant at least at the 95% confidence level. To avoid pos-
sible confusion with the probability p we indicate the p-values
as P.
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(≈ 8.5 × 10−4Z⊙) produces, on average, a change of
−1.15 in the log of odds ratio (≈ 25% in probabil-
ity) for presence of SF, for an average halo with gas
molecular fraction close to the mean, xmol ≈ 2.2 ×
10−3. Likewise, for a halo with Z ≈ 1.3 × 10−4Z⊙,
an increase of 1.2× 10−2 in xmol, increases the proba-
bility of SF by 75%. The analysis not only confirms
xmol as a critical parameter to trigger the SF in pri-
mordial halos, in agreement with previous works (see
e.g, de Souza et al., 2014), but provides the means to
interpret the role of each halo property in terms of
odds and probabilities. As stated in §3, the GML
analysis provides an estimate β̂i for the βi component
of each predictor variable. The values obtained can
be used to calculate the linear predictor, η:

η = β̂0 + β̂1Z + β̂2xmol, (10)

and transformed into a predicted probability, π:

π =
eη

1 + eη
, (11)

which uses the logit link defined in Eq. 3. Figure 4
displays the regression plane solution using the logit
link. The surface gives the probability of SF activity
for each pair (Z, xmol).

This can be used to assign a class membership for
each object for a given probability decision thresh-
old, πth, i.e. SF = 1 if π > πth and 0 if π < πth.
For each halo, the predicted probability can be com-
pared to the observed probability, which in this case
is p = 1 if the halo presents star formation activity,
and p = 0 otherwise. The performance of the method
in reproducing the correct observed probabilities can
be evaluated as detailed in §5. When class sample
sizes are approximately equal, which in this scenario
would imply a similar number of galaxies with and
without star formation activity, the optimal decision
threshold is πth ∼ 0.50 (see §5.2).

Nevertheless, this criterion is not appropriate when
the class sizes are imbalanced and an adjusting deci-
sion threshold has to be used. As a trivial example,
if the data is imbalanced, the fit can predict π = 0.2
for all haloes with SF = 1 and π = 0.1 for all haloes
with SF = 0. In this hypothetical scenario, the deci-
sion boundary would be in the range 0.1-0.2, instead
of being 0.5 (50%) as one would naively expect. A
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Figure 4: Predicted probabilities, π, of star formation activity
vs metallicity, Z, and molecular fraction, xmol, for the logit re-
gression.

more detailed explanation of how to adjust the de-
cision threshold probability, πth, and a discussion of
the predictive power of the method is given in §5.

The MLE and Bayesian approaches give almost
identical results for the estimated coefficients β̂i, de-
spite the addition of the prior. It seems that there is no
preferred model, as indicated also by the comparison
between the corresponding AIC, BIC and the loga-
rithm of maximum likelihood Lmax. We note though
the smaller credible intervals from the Bayesian logit
in comparison to those from the MLE analysis.

4.2. The Pop III-Pop II/I dichotomy
As previously mentioned, the first generation of

stars (Pop III) are thought to form within pristine gas,
while standard Pop II/I star formation takes place
within metal enriched gas. Here we investigate the
Pop III-Pop II/I dichotomy using a Bayesian regres-
sion with logit and probit link functions.

Figure 5 shows the gas fraction versus molecu-
lar fraction with a colour scheme corresponding to
stellar mass. A visual inspection indicates that larger
molecular fractions are strongly associated with high-
metallicity environments, confirming that the molec-
ular fraction is the main predictor. From a physi-
cal point of view, the fact that the gas fraction in the
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environment of Pop II/I stars is usually lower than
that of Pop III stars suggests that the cosmological
production of early heavy elements enhances signif-
icantly gas cooling capabilities and boosts molecule
formation in polluted material well above xmol ∼ a
few percents. Basically, metal cooling allows gas
fragmentation at regimes where pristine material is
not able to condense – see the region: { xmol > 10−2,
fgas < 10−1.1 }.

The present cosmological simulations switch the
stellar IMF from top-heavy to standard Salpeter when
the metallicity exceeds Zcrit = 10−4Z⊙ (see §2). To
perform the GLM analysis in this section, we define
Zbin as the binary response variable, depending on
whether the gas metallicity lies above or below Zcrit:

Zbin =

{
1 or ‘Pop II/I’ if Z ≥ Zcrit,
0 or ‘Pop III’ if Z < Zcrit.

(12)

One can then use the binomial GLM regression to
determine which global galaxy properties are linked
to the dichotomy between the Pop II/I and Pop III
host environment and how. We also use this problem
as an opportunity to demonstrate the use of both logit
(η = log π/(1−π)) and probit (η = Φ−1(π)) link func-
tions. Likewise the previous section, π here repre-
sents the predicted probability for the success of the
binary response variable, in other words if a galaxy
halo is an enriched Pop II/I environment given the
underlying galaxy properties.

Firstly, one must identify the key galaxy proper-
ties as predictor variables. As in the previous ex-
ample, we scale the predictors by their respective
means and divide by the standard deviations before
performing the analysis. Nonetheless, rather than
adding a set of pre-chosen predictors, we herein il-
lustrate a general feature selection approach, making
use of step function in R. The method attempts to
alternately drop and add members of an input set of
predictor candidates in order to minimize the AIC of
the fitted model. By using the stepwise algorithm we
are able to select the most parsimonious combination
of parameters and interaction terms from our input
set9. The scheme employed here falls into the cat-
egory of wrapper methods of feature selection, but

9See also the drop1 function in R, which is based on the
likelihood ratio test.

there exist other approaches that can be tailored to
determine how relevant a feature is in representing a
class in a high-dimensional space, i.e. so-called filter
methods (see e.g., Donalek et al., 2013, for a review
of feature selection methods in astronomy).
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Figure 5: Scaled gas fraction versus molecular fraction, color-
coded by stellar mass transformed by ArcSinh for visual pur-
poses. Circles and crosses represent pristine/low-metallicity
Pop III and high-metallicity Pop II/I stellar environments, re-
spectively.

We found that xmol plays the most important role
in the predictive power of the model. Furthermore,
the factors that maximise the information gain and
are worth including as predictor parameters are: xmol,
fgas, Mstar/Mgas, and Mstar. The selection is equivalent
regardless of whether the logit or probit link func-
tions are used.

Having chosen suitable input variables, we can
then apply the GLM analysis as described in §3.3
and §3.4. In Table 3 we provide the estimated co-
efficients for the predictor variables and respective
p − values. The coefficients in the two cases are
different as can be seen in Table 3, which is mostly
a consequence of the different choices of link func-
tion. Likewise, as in section 4.1, the logit coefficients
can be associated with probabilities. Once more, xmol

stands as the most influential variable, and a variation
of ≈ 1.2 × 10−2 in xmol, increases the chances for an
average dark halo to be a potential host of Pop II/I
stars by a factor of 99.7%. The predicted probabili-
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Table 3: β̂i coefficients from results of a Bayesian GLM analy-
sis (with Cauchy prior) with logit and probit links. Zbin, is the
response variable, while the intercept β̂0, xmol, fgas, Mstar and
Mstar/Mgas are predictors. The associated p − values (P) are
listed underneath the coefficients. The logarithm of the maxi-
mum likelihood (Lmax), the AIC and the BIC for each choice of
link function are also shown.

Response variable:
Zbin

Logit link Probit link
β̂0 −3.76 ± 0.22 −1.94±0.09

(P � 0.0001) (P � 0.0001)
β̂1 xmol 5.90±0.65 2.91 ± 0.32

(P � 0.0001) (P � 0.0001)
β̂2 fgas −0.97 ± 0.27 −0.43 ± 0.12

(P=0.0004) (P=0.0004)
β̂3 Mstar 0.80 ± 0.33 0.54 ± 0.22

(P=0.02) (P=0.01)
β̂4 Mstar/Mgas −0.86 ± 0.41 −0.58 ± 0.23

(P=0.04) (P=0.01)

Lmax −113 −114
AIC 236 238
BIC 263 265

ties π are therefore estimated by solving the follow-
ing equation:

η = β̂0 + β̂1xmol + β̂2 fgas + (13)

+ β̂3Mstar + β̂4
Mstar

Mgas
,

as well as either

Φ−1(π) = η, (14)

if the probit link function (Eq. 4) is used, or

π =
eη

1 + eη
, (15)

for the logit link function (Eq. 3).
Ultimately, logit and probit regression result in

similar predictions for the probability that the response
variable is unity, i.e. πlogit ≈ πprobit. To illustrate this
point, we calculate π twice for each galaxy in our
sample given its underlying properties: once using

the logit link and then again using the probit link.
A histogram of the differences is shown in Figure 6.
The logit link function leads to a value of π that is
only slightly higher. Thus, for the case studied here,
both link functions generate similar predictions, in
spite of their different interpretations (see e.g., Zuur
et al., 2013). A quantitative comparison between the
predictive power of logit and probit, and the increase
in number of relevant predictor variables are given in
the following section.
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Figure 6: Histogram of the difference between predicted prob-
abilities from logit, πlogit, and probit πprobit, regressions.

5. Diagnostics

We now describe our experimental setting to as-
sess the performance of GLM on the prediction of
star formation activity SFRbin and metal enrichment
Zbin. We report on accuracy (i.e., fraction of events
correctly classified) using a resampling technique known
as 10-fold cross validation (Hastie et al., 2009) in
§5.1, on Receiver Operating Characteristic (ROC) curves
(Duda et al., 2000) in §5.2 and on the confusion ma-
trix in §5.3.

5.1. Cross validation
When assessing model performance, it is of ut-

most importance to set aside a validation set to esti-
11



mate the true generalization power of the model un-
der analysis. This is particularly relevant to avoid
the risk of model over-fitting. An over-fitted model
captures aberrations on the training set that render
the model useless during prediction. A popular ap-
proach to model validation makes use of resampling
techniques (Hastie et al., 2009).

In the resampling technique known as k-fold cross
validation, the data is divided into k folds (subsam-
ples) of equal size. The technique runs iteratively
as follows. On each iteration, k − 1 folds are used
for training (model fitting), while the remaining fold
is used for testing (model assessment). The proce-
dure repeats k times, using mutually exclusive testing
folds across iterations. The final result is the aver-
age over the score obtained on each iteration. Cross
validation estimates the true performance of a clas-
sifier by exploiting all available information. In our
experiments, we use a value of k = 10 to achieve
a trade-off between bias (proportional to k) and vari-
ance (inversely proportional to k). Hereafter, all ROC
curves and confusion matrices are estimated using
the k = 10 cross-validation approach.

5.2. ROC curves
ROC curves provide both a visually and quanti-

tative approach to report on the accuracy of predic-
tions for binary classifiers. Hereafter, we refer to the
classifications as positive (1) or negative (0). The
technique consists of plotting the true positive rate
(TPR or Sensitivity) vs the false positive rate (FPR
or Specificity) as we vary the decision boundary πth.
The variation in the decision boundary enables us
to assess the performance of the classifier under un-
equal error costs (i.e., under scenarios where the cost
of a false positive is different from a false negative).

Specifically, to generate a ROC curve we make
use of two measurements:

Sensitivity =
TP

TP + FN
;

Specificity =
TN

TN + FP
, (16)

where TP = true positives, FP = false positives, TN
= true negatives, and FN = false negatives. For ex-
ample, in the case studied in §4.1 we would have:

• TP: the galaxy has SF and the method predicts
SF,

• FP: the galaxy does not have SF but the method
predicts SF,

• TN: the galaxy does not have SF and the method
predicts no SF,

• FN: the galaxy has SF, but the method predicts
no SF.

In this case the Sensitivity (Specificity) would quan-
tify the ability of the method to correctly identify
galaxies with (without) SF: the closer to 1 these val-
ues are, the more successful the analysis is. The same
interpretation holds for the case discussed in §4.2 by
replacing SFRbin with Zbin.

Sensitivity is normally plotted on the y-axis, while
1− Specificity is plotted on the x-axis (Figs. 7 and 8).
The classifier is run several times with a different
value of the decision threshold; each run provides a
point in the (1-Specificity, Sensitivity) plane. The
corresponding true ROC curve is obtained by joining
the set of coordinates starting at (0,0) and ending at
(1,1). An ideal ROC curve goes from (0,0) to (0,1)
to (1,1). A quantitative approach to assess the qual-
ity of a ROC curve is to calculate the area under the
curve (AUC), as a fraction of the area under the ideal
curve, as often done in cases of discrepancy or in-
equality measurements (since e.g. Gini, 1912, 1921).
Higher values of AUC correspond to more accurate
classifiers, while a value of 0.5 corresponds to a ran-
dom classifier (Hilbe, 2009).

The ROC curve can be used to access the opti-
mal πth, which is a trade-off between Sensitivity and
Specificity. In order words, it is the one correspond-
ing to the coordinate with minimum distance from
(0,1), where both Sensitivity and Specificity are max-
imum. This is essential to ultimately assign a class
membership for each data. A visual analysis of this
classification scheme is made via the confusion ma-
trix, which will be discussed in the next section.

5.3. Confusion Matrix
A complementary diagnostics method is the con-

fusion matrix C, which captures information about
the actual and predicted classifications of a particular
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learning algorithm or classifier (Kohavi and Provost,
1998). Columns in C correspond to actual classes,
whereas rows correspond to predicted classes (e.g.,
SFRbin,Zbin). The diagonal elements of the matrix
contain the number of cases where the actual and pre-
dicted class agree, e.g., C(i, i) contains the number
of cases where class i was predicted correctly. Off-
diagonal elements capture all combination of mis-
classifications, e.g., C(i, j) with i , j contains the
number of cases where class i was incorrectly pre-
dicted as class j. On a 2 × 2 confusion matrix, en-
tries along the diagonal stand for the number of true
negatives TN (top left) and true positives TP (bottom
right). Specifically, C can be represented as follows:

TN FN
FP TP

. (17)

6. Performance Comparison

During this section we compare the predictive
performance of both logit vs probit links as discussed
in §4.2 and between GLMs and artificial networks
for the case discussed at §4.110.

6.1. Logit vs Probit
The left panel of Figure 7 shows a comparison

between logit and probit ROC curves, pointing to
the equivalence in predictive power of both meth-
ods, achieving an outstanding performance of AUC
= 0.95, although their coefficients have a different in-
terpretation.

In order to assess the relevance of a good set of
predictor variables, the right panel of Figure 7 shows
a visualization of the logit GLM regression obtained
adding different predictor variables. While fgas, Mstar,
and Mstar/Mgas together have a non-negligible contri-
bution to explain the metallicity enrichment above/-
below Zcrit with an AUC = 0.74, the molecular frac-
tion, xmol, clearly stands out as the most important
parameter. This suggests that the level of molecular
gas fraction has a strong connection with the level of
metal content in primordial haloes.

10Note that as the MLE and Bayesian approaches gives al-
most identical fitted coefficients, they lead to exactly same pre-
dicted probabilities.

6.2. Comparison between GLM and Neural Networks
We compare GLM with a popular non-parametric

technique to classification known as Artificial Neu-
ral Networks (ANN) (Duda et al., 2000). A nonlin-
ear multi-layer ANN is capable of expressing flex-
ible decision boundaries over the variable space; it
is a nonlinear statistical model that applies to both
regression and classification. In particular, for an
ANN with one hidden layer, each intermediate and
output node computes a weighted combination of in-
puts, compressed (squashed) by a sigmoid (nonlin-
ear) function (Bishop, 1996).

Figure 8 shows ROC curves for GLM and ANN
analysis of the case presented in §4.1. The ROC
curves were generated as those discussed in the pre-
vious section. In our experiments, GLM attains an
AUC slightly higher than that of ANN (0.87 versus
0.83), reinforcing our claim for the competitiveness
of GLM despite its inherent simplicity. We stress
that the above comparison should not be extrapo-
lated to imply that GLMs are better suited for bi-
nary classification prediction than ANNs, but for this
particular and somewhat simple problem, both are
equally good. The main advantages of GLMs are
their portability and interpretation of the coefficients.
Moreover, the possibility to approach the problem
from a Bayesian perspective is extremely beneficial
when dealing with inherent issues of observational
data, such as errors-in-variables, selection bias, etc
(Loredo, 2013).

Figure 9 shows two confusion matrices, one for
GLM (left) and one for ANN (right) for the case un-
derlined in §4.1, i.e. the connection between star
formation activity and the gaseous chemical prop-
erties xmol and Z of galaxies. While TN is similar
under both classifiers, TP differs significantly: ANN
exhibits a high number of false negative FN (upper
right) in contrast to the corresponding entry for GLM.
Hence, the overall accuracy11 of GLM is 96.7%, while
that of ANN is 93%.

7. Conclusions

We perform a comprehensive introduction of logit
and probit generalized linear model regression for

11The accuracy is given by (T N +T P)/(T N +T P+FP+FN).
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Figure 7: Left panel: ROC curves for logit (solid blue curve) vs probit (dotted orange curve) regression in the case discussed in
§4.2. Right panel: ROC curves for logit regression for different combinations of predictor variables: ∼ β̂0 (dotted-dashed green
curve); ∼ β̂0 + β̂4

Mstar
Mgas

(dashed-dashed gold curve); ∼ β̂0 + β̂4
Mstar
Mgas

+ β̂3Mstar (dotted magenta curve); ∼ β̂0 + β̂4
Mstar
Mgas

+ β̂3Mstar + β̂2 fgas

(dashed cyan curve); ∼ β̂0 + β̂4
Mstar
Mgas

+ β̂3Mstar + β̂2 fgas + β̂1xmol (solid blue curve). The dotted grey curve in both figures represents
the performance of a random classifier.

the astronomical community from both a maximum
likelihood and a Bayesian perspective. As a real ap-
plication, we analyse the host environment of the first
generation of stars as predicted by numerical hydro-
simulations of the early Universe, including detailed
chemistry, gas physics, star formation, stellar evolu-
tion and stellar feedback. A summarizing flowchart
visualization of the entire process is given in Ap-
pendix B.

The halo properties analysed here are categorical
with two possible outcomes and therefore ideal can-
didates for the application of binomial GLM regres-
sion. These correspond to either (i) the presence/ab-
sence of star formation activity, or (ii) metal con-
tent above/below the critical metallicity associated to
stellar population transition in primordial epochs.

In the first case, the explanatory variables were
decided beforehand with preliminary physical moti-
vation, while in the second case, we demonstrated
the use of the AIC to select the most parsimonious
set of variables from among a given set of candidates.
This method is particularly beneficial for providing
new insight into fundamental underlying galaxy prop-

erties.
A maximum likelihood as well as a Bayesian (with

Cauchy priors) analysis result in very similar coeffi-
cients for each variable. We have explored the use
of both logit and probit link functions and found that
they lead to different β̂ coefficients, but with the same
sign. Nevertheless, calculations of the predicted prob-
abilities produce very similar results regardless of
whether a logit or probit model is used for estima-
tion.

The GLM method has been shown to be very
competitive against artificial neural networks, attain-
ing an area under the curve (AUC) coefficient of 0.87
against 0.83 from ANN. Since a value of AUC = 1
indicates a perfect classifier and a value of AUC =

0.5 suggests a random predictor, both GLM and ANN
approaches can be considered rather robust, albeit
the AUC seems to favour slightly the GLM for this
particular test. Furthermore, given its inherently sim-
plicity, GLM results are easily portable and have a
more straightforward interpretation of its coefficients
in terms of odds and probabilities.

Also worth noting is that the potential of GLM
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Figure 8: ROC curves for Generalized Linear Model (solid blue
curve) and Artificial Neural Network (dashed green curve) for
the case discussed in §4.1. The dotted grey curve represents the
performance of a random classifier.

regression goes far beyond binary classification. Many
data situations involve discrete data, but are never-
theless modelled as if the response variable were con-
tinuous. If the data are modelled as discrete, it is
by employing a Poisson model, without due regard
for the corresponding distributional assumption of
equality between mean and variance (equidispersion).
This is a strongly restrictive technical assumption and
is rarely met in real data. In practice, there are nearly
as many count models as there are shapes of counts:
there is a variety of mixture models, of zero-inflation
models, of two-part hurdle models, of finite mixture
models, etc. which assume that the counts being
modelled are being generated from more than one
source. There are situation where the classic GLM
assumption of uncorrelated measurements fails, e.g.,
for repeated measurements from the same object. For
theses cases, plenty of extensions exist, such as gen-
eralized estimating equations (Liang and Zeger, 1986).
Additionally, there are generalized additive models,
non-parametric quantile count models, models with
endogenous stratification, panel models, and 3-parameter
count models, to name only a few. GLMs are of com-
mon use in the statistical literature, but almost Terra
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Figure 9: Confusion matrix for the model SFRbin ∼ xmol + Z
(in R notation) discussed in §4.1, as expected by logistic GLM
(left) and ANN (right). In each panel, the first and second
columns refer to the simulated objects with (1532 galaxies) and
without (148 galaxies) star formation activity, respectively. The
on-diagonal elements refer to TN (top left) and TP (bottom
right), while the off-diagonal elements refer to FP (top right)
and FN (bottom left).The color scheme ranges from blue, cor-
rect values, to orange, incorrect values, with the intensity deter-
mined by the number of objects in each category.

incognita in astronomical data analysis, with only
few recent notable applications of logistic regression
(e.g. Raichoor and Andreon 2012, 2014; Lansbury
et al. 2014), Poisson regression (e.g. Andreon and
Hurn 2010) and negative binomial regression (Ata
et al., 2015).

Finally, we highlight the vast potential of GLMs
and extended GLMs for the astronomical community
through their possible application to a plethora of as-
tronomical problems, such as: photometric redshift
estimation (gamma distributed data; Elliott et al., 2015),
globular cluster counts (Poisson distributed data), or
galaxy morphological classification (multinomial dis-
tributed data). GLMs might be a precious instrument
for astronomical investigations, thanks to their capa-
bilities in addressing scientific questions that could
not be answered otherwise. Thus, we are confident
in a prompt integration of these methods into astron-
omy, with the hope that contemporary statistical tech-
niques may become common practice in the 21st cen-
tury astrophysical research.
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Appendix A. R scripts

In the following, we display the R scripts for the
models discussed in sections 3.2,3.3, and 3.4, respec-
tively.

MLE with logit link
The basic syntax for a MLE logit model:

1 glm . fit <- glm ( y~x1+x2 + . . . ,
2 family = binomial ( "logit" ) ) .

The summary command can be called on the glm.fit
object returned, as can plot which will display a
number of useful fit and model checking diagnostics.

Bayesian GLM with logit link
The basic syntax for a Bayesian logit model:

1 library ( arm )
2 # Outpu t i d e n t i c a l t o ML l o g i t
3 blr1 <- bayesglm ( y ~ x1+x2+ . . . ,
4 family=binomial ( link="logit" ) ,
5 prior . scale=Inf , prior . df=Inf ,
6 data=<datafile >)
7 display ( blr1 )
8

9 # Bayes GLM wi th d e f a u l t b i n o m i a l
10 # l o g i t l i n k and Cauchy p r i o r
11 # wi th s c a l e =2.5
12

13 blr2 <- bayesglm ( y~x1+x2 + . . . ,
14 family=binomial ,
15 data=<datafile >)
16 display ( blr2 )
17

18 # Bayes l o g i t w i th normal p r i o r
19 # wi th s c a l e =2.5
20 blr3 <- bayesglm ( y~x1+x2 + . . . ,
21 family=binomial ,

22 prior . scale=2 .5 , prior . df=Inf ,
23 data=<datafile >)
24 display ( blr3 ) .

Bayesian GLM with probit link
The basic syntax for a Bayesian probit model:

1 library ( arm )
2 bpr <- bayesglm ( y~x1+x2 + . . . ,
3 family=binomial ( link="probit" ) ,
4 prior . scale=2 .5 , prior . df=Inf ,
5 data=<datafile >)
6 display ( bpr ) .

Appendix B. Flowchart for GLM regression

This section illustrates a brief summary of GLM
analysis and model diagnostics. It comprises:

• Acquire the dataset.

• Choose the response variable to be modelled.

• Choose predictor variables.

• Choose GLM family, e.g. Gaussian, Poisson,
binomial.

• Choose either a maximum-likelihood or a Bayesian
approach.

• Choose link function.

• Estimating coefficients by means of a GLM or
Bayesian GLM analysis, i.e., estimate η and
predicted probabilities π

• Classification and diagnostic tests:

– ROC curve-probability threshold.

– Confusion Matrix for a given πth and as-
signed class memberships.
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Figure B.10: Tabular data is represented by blue rectangles, calculations by red diamonds, choices by green parallelograms, and
diagnostic outcomes by orange heptagons.
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