1,588 research outputs found

    Cybersecurity Breaches and Auditor Turnover

    Get PDF

    Cybersecurity Breaches and Auditor Turnover

    Get PDF

    Syn-kinematic hydration reactions, grain size reduction, and dissolution-precipitation creep in experimentally deformed plagioclase-pyroxene mixtures

    Get PDF
    Source at https://doi.org/10.5194/se-9-985-2018 .It is widely observed that mafic rocks are able to accommodate high strains by viscous flow. Yet, a number of questions concerning the exact nature of the involved deformation mechanisms continue to be debated. In this contribution, rock deformation experiments on four different water-added plagioclase–pyroxene mixtures are presented:(i) plagioclase(An60–70)–clinopyroxene–orthopyroxene,(ii) plagioclase(An60)–diopside,(iii) plagioclase(An60)–enstatite,and iv) plagioclase(An01)–enstatite. Samples were deformed in general shear at strain rates of 3×10−5 to 3×10−6 s−1, 800°C, and confining pressure of 1.0 or 1.5GPa. Results indicate that dissolution–precipitation creep (DPC) and grain boundary sliding (GBS) are the dominant deformation mechanisms and operate simultaneously. Coinciding with sample deformation, syn-kinematic mineral reactions yield abundant nucleation of new grains; the resulting intense gray size reduction is considered crucial for the activity of DPC and GBS. In high strain zones dominated by plagioclase, a weak, nonrandom, and geometrically consistent crystallographic preferred orientation (CPO) is observed. Usually, a CPO is considered a consequence of dislocation creep, but the experiments presented here demonstrate that a CPO can develop during DPC and GBS. This study provides new evidence for the importance of DPC and GBS in mid-crustal shear zones within mafic rocks, which has important implications for understanding and modeling mid-crustal rheology and flow

    Mechanical Competence and Bone Quality Develop During Skeletal Growth.

    Get PDF
    Bone fracture risk is influenced by bone quality, which encompasses bone's composition as well as its multiscale organization and architecture. Aging and disease deteriorate bone quality, leading to reduced mechanical properties and higher fracture incidence. Largely unexplored is how bone quality and mechanical competence progress during longitudinal bone growth. Human femoral cortical bone was acquired from fetal (n = 1), infantile (n = 3), and 2- to 14-year-old cases (n = 4) at the mid-diaphysis. Bone quality was assessed in terms of bone structure, osteocyte characteristics, mineralization, and collagen orientation. The mechanical properties were investigated by measuring tensile deformation at multiple length scales via synchrotron X-ray diffraction. We find dramatic differences in mechanical resistance with age. Specifically, cortical bone in 2- to 14-year-old cases exhibits a 160% greater stiffness and 83% higher strength than fetal/infantile cases. The higher mechanical resistance of the 2- to 14-year-old cases is associated with advantageous bone quality, specifically higher bone volume fraction, better micronscale organization (woven versus lamellar), and higher mean mineralization compared with fetal/infantile cases. Our study reveals that bone quality is superior after remodeling/modeling processes convert the primary woven bone structure to lamellar bone. In this cohort of female children, the microstructural differences at the femoral diaphysis were apparent between the 1- to 2-year-old cases. Indeed, the lamellar bone in 2- to 14-year-old cases had a superior structural organization (collagen and osteocyte characteristics) and composition for resisting deformation and fracture than fetal/infantile bone. Mechanistically, the changes in bone quality during longitudinal bone growth lead to higher fracture resistance because collagen fibrils are better aligned to resist tensile forces, while elevated mean mineralization reinforces the collagen scaffold. Thus, our results reveal inherent weaknesses of the fetal/infantile skeleton signifying its inferior bone quality. These results have implications for pediatric fracture risk, as bone produced at ossification centers during children's longitudinal bone growth could display similarly weak points. © 2019 American Society for Bone and Mineral Research

    Odderon and photon exchange in electroproduction of pseudoscalar mesons

    Get PDF
    We investigate the reaction ep→ePSXe p \to e PS X where PS denotes a pseudoscalar meson π0,η,η′\pi^0, \eta, \eta', or ηc\eta_c and X either a proton or resonance or continuum states into which the proton can go by diffractive excitation. At high energies photon and odderon exchange contribute to the reaction. The photon exchange contribution is evaluated exactly using data for the total virtual photon-proton absorption cross section. The odderon exchange contribution is calculated in nonperturbative QCD, using functional integral techniques and the model of the stochastic vacuum. For the proton we assume a quark-diquark structure as suggested by the small odderon amplitude in pppp and ppˉp \bar{p} forward scattering. We show that odderon exchange leads to a much larger inelastic than elastic PS production cross section. Observation of our reaction at HERA would establish the soft odderon as an exchange object on an equal footing with the soft pomeron and would give us valuable insight into both the nucleon structure and the mechanism of high energy diffractive scattering.Comment: 20 pages, 7 figure

    Masses and couplings of vector mesons from the pion electromagnetic, weak, and \pi\gamma transition form factors

    Full text link
    We analyse the pion electromagnetic, charged-current, and πγ\pi\gamma transition form factors at timelike momentum transfers qq, q2=s≤1.4q^2=s\le 1.4 GeV2^2, using a dispersion approach. We discuss in detail the propagator matrix of the photon-vector-meson system and define certain reduced amplitudes, or vertex functions, describing the coupling of this system to final states. We then apply the derived analytic expressions to the analysis of the recent e+e−→π+π−e^+e^-\to \pi^+\pi^-, τ−→π−π0ντ\tau^-\to \pi^-\pi^0\nu_\tau, and e+e−→π0γe^+e^-\to \pi^0\gamma data. We find the reduced amplitudes for the coupling of the photon and vector mesons to two pseudoscalars to be constant, independent of ss, in the range considered, indicating a "freezing" of the amplitudes for s≤1s\le 1 GeV. The fit to the form factor data leads to the following values of the Breit-Wigner resonance masses m_{\rho^-}=775.3\pm 0.8 MeV, m_{\rho^0}=773.7\pm 0.6 MeV and m_\omega=782.43\pm 0.05 MeV, where the errors are only statistical.Comment: revtex, 23 page

    Security of quantum bit string commitment depends on the information measure

    Get PDF
    Unconditionally secure non-relativistic bit commitment is known to be impossible in both the classical and the quantum world. However, when committing to a string of n bits at once, how far can we stretch the quantum limits? In this letter, we introduce a framework of quantum schemes where Alice commits a string of n bits to Bob, in such a way that she can only cheat on a bits and Bob can learn at most b bits of information before the reveal phase. Our results are two-fold: we show by an explicit construction that in the traditional approach, where the reveal and guess probabilities form the security criteria, no good schemes can exist: a+b is at least n. If, however, we use a more liberal criterion of security, the accessible information, we construct schemes where a=4 log n+O(1) and b=4, which is impossible classically. Our findings significantly extend known no-go results for quantum bit commitment.Comment: To appear in PRL. Short version of quant-ph/0504078, long version to appear separately. Improved security definition and result, one new lemma that may be of independent interest. v2: added funding reference, no other change

    Practical private database queries based on a quantum key distribution protocol

    Get PDF
    Private queries allow a user Alice to learn an element of a database held by a provider Bob without revealing which element she was interested in, while limiting her information about the other elements. We propose to implement private queries based on a quantum key distribution protocol, with changes only in the classical post-processing of the key. This approach makes our scheme both easy to implement and loss-tolerant. While unconditionally secure private queries are known to be impossible, we argue that an interesting degree of security can be achieved, relying on fundamental physical principles instead of unverifiable security assumptions in order to protect both user and database. We think that there is scope for such practical private queries to become another remarkable application of quantum information in the footsteps of quantum key distribution.Comment: 7 pages, 2 figures, new and improved version, clarified claims, expanded security discussio
    • …
    corecore