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Private queries allow a user, Alice, to learn an element of a database held by a provider, Bob, without revealing
which element she is interested in, while limiting her information about the other elements. We propose to
implement private queries based on a quantum-key-distribution protocol, with changes only in the classical
postprocessing of the key. This approach makes our scheme both easy to implement and loss tolerant. While
unconditionally secure private queries are known to be impossible, we argue that an interesting degree of security
can be achieved by relying on fundamental physical principles instead of unverifiable security assumptions in
order to protect both the user and the database. We think that the scope exists for such practical private queries
to become another remarkable application of quantum information in the footsteps of quantum key distribution.
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I. INTRODUCTION

As telecommunication gains steadily in importance, ques-
tions of security and privacy naturally arise. Indeed, private
data are stored on a grand scale and have become a precious
commodity. Unfortunately, as a matter of principle, classical
information theory is not able to secure privacy in telecommu-
nication against an unlimited adversary. It was hence found
all the more extraordinary that quantum key distribution
(QKD) allows such “unconditionally” private communication,
provided that the two parties trust each other. However,
the more general case of communication between distrustful
parties, who wish to protect not only their common privacy
against eavesdropping but also their individual privacy against
each other, is maybe of even greater interest.

Private queries are an important problem of this type.
Imagine that a user, Alice, wants to know an element of a
database held by a database provider, Bob, but does not want
him to know which element she is interested in. Bob in turn
wants to limit the amount of information that she can gain
about the database. In particular, he does not want to just hand
over the whole database, which would trivially allow Alice
to learn her bit of interest without giving any information on
her choice away. It is not hard to imagine scenarios (e.g.,
in the financial world) where the capability of implementing
such private queries would be useful. The information stored
in the database may be both valuable and sensitive, such that
Bob would like to sell it piece by piece, whereas the mere
fact of being interested in an element of the database might
already reveal something important about Alice (e.g., that she
is thinking about buying a certain company). Of course if there
were a cheap way of realizing the task, it would also be useful
for protecting privacy in online bargaining and web search, for
example, as well as to construct other interesting cryptographic
primitives from it [1].

The described task is also known as symmetrically pri-
vate information retrieval and as 1 out of N oblivious
transfer [2]. It has attracted much attention both in computer

science [3,4] and in quantum information. Classically, the
problem seems like a logical contradiction. How could a
database provider answer a question, which he is not supposed
to know, without giving any additional information? One
might hope that quantum mechanics could solve this dilemma.
Several quantum protocols were proposed (see, for example,
Refs. [5,6]), none of which were found to offer complete
protection for both sides. Indeed, it was subsequently proven in
Ref. [7] that the described task cannot be implemented ideally,
not even using quantum physics. The essential assumption
in the impossibility proof is that the protocol is perfectly
concealing, i.e., that Bob has no information whatsoever about
which database element Alice has retrieved. Rephrased at
the quantum level this is understood as the condition that
the density matrix of Bob’s subsystem must be completely
independent of Alice’s choice. Reference [7] shows that under
this condition Alice can always implement an attack based on
the Schmidt decomposition which allows her to read the entire
database. This argument is closely linked to the well-known
impossibility proofs for quantum bit commitment [8,9].

Recently, Giovannetti, Lloyd, and Maccone [10] pointed
out that very interesting degrees of privacy are achievable
for protocols that are not perfectly concealing, because of
the possibility to catch dishonest parties due to the errors
they introduce (see also Refs. [11,13,14]. In the protocol of
Ref. [10] Alice encodes her question in a quantum state,
which she sends to Bob. She also sends a decoy state,
which gives her a chance to detect if Bob is cheating. The
security relies on the impossibility to perfectly discriminate
the nonorthogonal question and decoy states and on the
changes Bob’s measurement will introduce as a consequence.
Unfortunately the protocol is very vulnerable in realistic
situations where there are significant transmission losses,
such that Alice has to send the same question multiple
times. If some of the losses are in fact due to Bob tapping
the line, then he can learn Alice’s question without being
detected.
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II. CLAIM

In this paper we present a new approach to the private query
problem. Our protocol is explicitly not perfectly concealing in
the above sense, so that the impossibility proof of Ref. [7] does
not apply. We show that the following statements hold for our
protocol.

(1) Database security is very good. Even for relevant
multiqubit joint measurements Alice’s accessible information
is restricted to a well-defined small percentage of the database
elements. The concrete limits for different attacks are shown
in the security discussion. Moreover the additional elements
Alice learns are randomly distributed over the database and
therefore of little use to her. In general, database security
is ensured by the impossibility of perfectly distinguishing
nonorthogonal quantum states.

(2) User privacy is also very high. We study several natural
attacks and derive a simple limit on the information Bob can
obtain. In general, we show that the no-signaling principle
implies that every malicious action of Bob’s will introduce
errors and can hence be detected by Alice—systematic
cheating is impossible.

The protocol relies on QKD with changes only in the post-
processing and can hence profit from many of the advantages of
this well understood and commercially available technology.
In comparison to Ref. [10] it offers the advantage of practical
feasibility, in particular, loss tolerance and scalability to large
databases.

Note that the incorporation of security assumptions such
as the bounded storage model [15] could make the protocol
completely secure, under the condition that those assump-
tions are fulfilled. However, even in the absence of such
assumptions, our protocol’s basic security is guaranteed by
fundamental physical principles, namely, the impossibility of
perfectly discriminating nonorthogonal quantum states and the
impossibility of superluminal communication.

It should be underlined that we do not propose an ideal
cryptographic primitive, which would furthermore allow one
to construct other ideal cryptographic primitives such as user
identification, bit commitment, and coin flipping [1], but rather
a new practical and potentially very useful application of
quantum communication.

Our protocol is similar to the proposal of Bennett et al. [5],
which can be interpreted to rely on the Bennett-Brassard 1984
(BB84) QKD [16]. It is well known that the proposal of
Ref. [5] is susceptible to a quantum memory attack by the user,
which corrupts database security entirely. The crucial point is
that Ref. [5] is perfectly concealing, hence Lo’s impossibility
proof [7] implies that the user can learn the entire database—in
this case with the help of a quantum memory. We show that this
type of attack can be forestalled by using the Scarani-Acin-
Ribordy-Gisin 2004 (SARG04) QKD scheme [17] instead
of the BB84 protocol. Then user privacy is slightly weakened,
but the quantum memory attack is no longer feasible. Moreover
the errors a cheating provider introduces largely guarantee user
privacy.

III. APPROACH

In order to better understand our approach it is very
useful to compare it to QKD. In general QKD consists

of a first phase, where a large number of quantum states
are prepared, exchanged, and measured, and then a second
phase, where Alice and Bob extract a key from the quantum
communication part with the help of an a priori chosen coding
and interpretation process. The key is then known to both Alice
and Bob entirely and can be used to encrypt the actual message,
which is sent via a classical channel. The quantum states and
the postprocessing procedure are chosen such that the key
cannot be eavesdropped on without introducing errors, thus
protecting Alice’s and Bob’s common privacy.

The basic idea of our protocol is to use QKD in combination
with adequate postprocessing to generate an N -bit string Kf

that will serve as an oblivious key [18] for a database of N bits.
For this purpose, Kf must be distributed in such a way that
(1) Bob knows the key entirely, (2) Alice knows only a few bits
of Kf —ideally exactly one (database security), and (3) Bob
does not know which bits are known to Alice (user privacy).
In order to use Kf to encrypt the database, Bob adds key
and database bitwise with a relative shift chosen by Alice and
sends her the encrypted database. The relative shift is needed
in order to ensure that Alice’s bit of interest is encoded with
an element of Kf she knows, so that she can decipher the bit
and thus receive the answer to her private query.

Within our approach, the case of Alice knowing exactly one
bit cannot be realized deterministically. So in general Alice will
know a few bits of Kf , which means that database privacy is
good but not perfect. As the number of Alice’s elements is
Poisson distributed, there is also a small probability of Alice
having no bit in the end. The protocol then needs to be repeated.
This can be done without loss of privacy for either party: The
created string Kf does not contain any information on
the database, so database security is not touched, and likewise
the shift (which maps Alice’s known key element onto the
database element she needs) is only communicated once a
correct key has been established. Of course, Alice could claim
to have obtained no element of Kf with the hope of having
more elements after a repetition. However, this strategy can be
made ineffective by choosing the parameters of the protocol
such as to make the case of Alice having no element very
unlikely (cf. also Sec. V).

As already mentioned, the generation of Kf can be based
on QKD techniques. Consider for instance four-state BB84-
type QKD. After Bob has sent the states (without further
information), Alice, choosing measurement bases at random,
will measure half of the bits she receives in the correct
basis—without yet knowing for which ones her choice was
correct. When Bob subsequently announces the bases, we have
the situation that (I) Bob knows the entire “raw key,” (II) Alice
knows half of the bits, and (III) Bob cannot know which ones
Alice has measured correctly. Alice’s limited information on
the raw key can now be further diluted by adequate processing
in order to generate the oblivious key Kf , and this is indeed
the way Ref. [5] essentially works. However, if Alice has a
quantum memory this protocol is no longer secure. She can
then store the received states and postpone all measurements
until after Bob’s announcement. By doing so, she can learn
Kf entirely—there is hence actually no database security
at all.

Fortunately this attack can be largely forestalled rather
easily if one uses a SARG-QKD scheme instead of the BB84
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protocol. The SARG04 protocol uses the same states as the
four-state-BB84 protocol. The main difference lies in the
attribution of bit values to the quantum states. Whereas in
the BB84 protocol one state from each of the two bases codes
for 0 and the other one for 1, in the SARG04 protocol it is
the basis itself that codes for the bit value. That is, if Bob
sends a state in the “up-down” basis � this signifies a 0, and
a state from the “left-right” basis ↔ means 1. During the
postprocessing Bob does not announce which basis he has
used for each qubit. Instead Bob announces the state he has
sent plus one state from the other basis (in random order). Alice
is thus faced with a state discrimination problem that cannot
be solved perfectly, i.e., unambiguously and deterministically
at the same time. This slight change has profound implications
for SARG04 QKD [19]. Here we show that it is also very useful
for implementing private queries. A simple protocol based on
this approach consists of the following steps.

IV. PROTOCOL

(1) Bob sends a long random sequence of qubits (e.g.,
photons) in states |↑〉, |→〉, |↓〉, and |←〉. States |↑〉 and |↓〉
code for 0, and states |←〉 and |→〉 correspond to bit value
1. For instance, to send a bit 1 Bob can prepare a qubit in the
state |→〉.

(2) Alice measures each state in the � or the ↔ basis at
random. This alone does not allow her to infer the sent bit
value.

(3) Alice announces in which instances she has successfully
detected the qubit; lost or not detected photons are disregarded.
The possibility to discard bits does not allow Alice to cheat,
because after step 2 she still has no information whatsoever on
the sent bit values (cf. step 5). As a consequence, the protocol
is completely loss independent.

(4) For each qubit that Alice has successfully measured, Bob
announces a pair of two states: the one that has actually been
sent and one from the other basis, so {|↑〉,|→〉}, {|→〉,|↓〉},
{|↓〉,|←〉}, or {|←〉,|↑〉}. If |→〉 has been sent, Bob could
announce, for instance, {|↑〉,|→〉}. This is exactly as in the
SARG04 QKD protocol [17].

(5) Alice interprets her measurement results of step 4.
Depending on which basis she has chosen and which result she
has obtained she will be able to decipher the sent bit value or
not. For instance, if |→〉 has been sent and {|↑〉,|→〉} has been
announced, Alice can rule out |↑〉 only if she has measured
in the � basis and obtained the result |↓〉. She can then
conclude that the state was |→〉 and the bit value is 1. Direct
measurement as under step 2 will yield 1/4 of conclusive
results and 3/4 of inconclusive ones. Both conclusive and

FIG. 1. How to reduce Alice’s information: her information on a
sum string is lower than that on the initial strings. Question marks
symbolize bits whose value is unknown to Alice.

inconclusive results are kept. Alice and Bob now share a string
which is known entirely to Bob and in a quarter to Alice.

(6) The created string must be of length k × N (with k

being a security parameter). It is cut into k substrings of length
N . These strings are added bitwise in order to reduce Alice’s
information on the key to roughly one bit (cf. Fig. 1).

(7) If Alice is left with no known bit after step 6, the protocol
has to be restarted. The probability for this to occur can be kept
small. See also the discussion in the previous and following
sections.

(8) If Kf has been established correctly, Alice will know at
least one element of it. Suppose she knows the j th bit K

f

j and
wants the ith bit of the database Xi . She then announces the
number s = j − i in order to allow Bob to encode the database
by bitwise adding Kf , shifted by s. So Bob announces N bits
Cn = Xn ⊕ K

f
n+s where Alice can read Ci = Xi ⊕ K

f

j and
thus obtain Xi . The shift will hence make sure that Alice’s bit
of interest is coded with a key element she knows so that the
private query can be completed.

V. DISCUSSION

Steps 1 to 5 of the above protocol are completely identical
to SARG04 QKD with the only difference that every bit is kept,
regardless if it is conclusive or not for Alice. SARG04 QKD
was initially conceived to make QKD more resistant to photon
number splitting attacks when weak pulses are used instead of
single photons for the sake of practical feasibility. In our case
the use of SARG04 QKD not only provides us with the benefits
of loss tolerance, technological practicability, and conceptual
closeness to well-understood QKD, but it also prevents the
quantum memory attack that destroyed the security of the
protocol of Ref. [5]. Even using a quantum memory Alice
is always confronted with the problem of discriminating two
nonorthogonal quantum states and will hence always have
incomplete knowledge on the raw key. This lack of information
is subsequently further amplified by step 6.

Note that following the “honest” way of measuring and
interpreting her results Alice will also gain probabilistic
information on nonconclusive bits. If Alice obtains no result
it is with probability 2/3 because she has chosen the same
basis for measurement as Bob has chosen for state preparation
(which will never yield a conclusive result). Considering the
example of step 5, Alice can obtain the result |→〉 when
measuring in ↔ both if Bob sent |→〉 (then with probability
1) and if Bob sent |↑〉 (then with probability 1/2 only). So,
although |→〉 is not a conclusive result, Alice can infer that
the sent state was |→〉 (bit 1) with probability 2/3 and |↑〉
(bit 0) with probability 1/3. This additional information can
be diluted to a negligible level by the postprocessing of step 6.

After creation of the raw key of k × N bits, the string is
divided into k substrings of length N . Following the protocol,
after adding the substrings, Alice will on average know
n̄ = N ( 1

4 )k bits, where the number n follows approximately
a Poisson distribution. On the other hand, the probability P0

that she does not know any bits at all and that the protocol must
be restarted is P0 = [1 − ( 1

4 )k]N ≈ e−n̄. For large N , which is
the most interesting case in practice, it is therefore possible to
ensure both n̄ 
 N and small P0 by choosing an appropriate
value of k. For instance, for a database of N = 50 000 elements
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TABLE I. Example of possible choices of k for different database
sizes N . We show the failure probability P0 and the expected number
of elements n̄ an honest Alice will obtain.

N

103 5 × 103 104 5 × 104 105 106

k 4 5 6 7 7 9
P0 0.020 0.008 0.087 0.047 0.002 0.022
n̄ 3.91 4.88 2.44 3.05 6.10 3.81

k = 7 is a choice providing Alice with n̄ ≈ 3 elements of the
final key on average whereas the probability of failure is only
about 5% (see also Table I). The case of many repetitions
(which might allow Alice to wait until she obtains a large
value of n by chance) is hence very unlikely. This is important
for the protocol’s security. Since the states sent by Bob do not
contain any information about the database, and since Alice
only chooses and communicates the shift s to Bob once she
knows at least one bit of the final key, a few repetitions will not
compromise anybody’s security. Note that even if Alice knows
n > 1 bits of the oblivious key, she has to pick a single shift
s, which means that in general she can only learn one chosen
element of the database, since the other n − 1 bits known to her
will be at random positions in the key and thus in the database.

However, the fact that Alice normally obtains additional,
less interesting bits should not be seen only as a drawback
of the protocol, as it also offers an interesting possibility to
enhance her security: Alice can buy the extra bits in question
publicly (as opposed to privately), in order to compare them
with Bob’s answers. As explained in detail in the security
section, a cheating Bob will always lose knowledge on Kf .
The errors he thus introduces will then be detectable for Alice.
This way what seems to be a flaw in the protocol can be used
to strengthen user privacy.

VI. SECURITY

We now turn to the question of which degree of privacy
our protocol offers precisely. We study the most evident
attacks and clarify the way in which two fundamental physical
principles provide the basis for the protocol’s security. While
basic attacks are studied and the essential intuition is given, a
complete security analysis remains work for the future.

A. Database security

Let us first discuss database security. In general one must
assume that Alice disposes of a quantum memory and is
hence not forced to measure directly as in step 2. Instead
she can keep the photon and, once Bob has announced the
state pair, apply the optimal unambiguous state discrimination
(USD) measurement [20,21] that will correctly tell her
which of the two announced states has actually been sent.
The success probability of the USD measurement is, for the
case of two equally likely states, bounded by 1 − F (ρ0,ρ1),
where F (ρ0,ρ1) is the fidelity between the two quantum states
one seeks to discriminate. Here, Alice’s measurement will
hence only work with a success probability of 1 − |〈↑ | →
〉| = 1 − 1/

√
2 ≈ 0.29, only slightly more than the 0.25 of the

direct measurement. In the above example with N = 50 000
and k = 7 this will provide her with n̄ = 9.3 elements on
average—only a small gain compared to n̄ = 3 and very little
in relation to N = 50 000 for such a complex attack. So even
using a quantum memory, individual measurements will not
substantially increase her information on Kf . The reason for
this is precisely the fact that our protocol is based on SARG04
coding rather than on BB84 coding.

A more general attack is to store the received photons
in a quantum memory and to postpone all measurements
until the very end of the protocol after step 6, so that she
knows which k qubits contribute to an element of the final
key. The individual bit values of the raw key are actually
of no interest to her. So, instead of performing the optimal
individual measurement on each of the k qubits constituting
an element of Kf , Alice should perform a joint measurement.
An example for this is Helstrom’s minimal error-probability
measurement, i.e., the measurement that distinguishes two
quantum states with the highest information gain [22,23]. In
the case of two equally likely quantum states ρ0 and ρ1, the
probability to guess the state at hand correctly is bounded by
Pguess = 1

2 + 1
2D(ρ0,ρ1), where D(ρ0,ρ1) is the trace distance.

For a joint Helstrom measurement on a bit of Kf one finds
this probability to scale with the number k of added qubits
as Pguess = 1

2 + 1
2
√

2k
. So the more substrings are added to

generate the final key, the harder it is for her to guess the bit
value, i.e., the parity of the k qubits. For example, for k = 7
Alice will guess a key element correctly with 54.4% instead
of 50% for a random guess. Likewise, the success probability
of unambiguously discriminating the two k-qubit mixed states
corresponding to odd and even parity declines rapidly with
the number of qubits k (see Fig. 2). In conclusion, it is clear
that the impossibility to perfectly distinguish nonorthogonal
quantum states can effectively protect the database’s security
and prevent Alice from knowing a substantial part of it,
even when she uses perfect storage technology and realizes
the theoretically optimal joint measurements. We see that
incorporating a SARG04 state discrimination problem as
a vital part of the protocol, the Schmidt attack of Lo’s
impossibility proof can be averted. The price to pay is a
protection of the user that is not total. We now turn to the
question of user privacy.
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FIG. 2. (Color online) The upper bound on the success probability
of the joint unambiguous state discrimination (USD) measurement
on k qubits declines rapidly with k.
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B. User privacy

As we have discussed above, a not perfectly concealing
protocol, i.e., a protocol where Bob can gain some information
on Alice’s choice, is the prerequisite to prevent her from being
able to compromise database security entirely [7]. For the given
protocol it may not be obvious at first sight how Bob can access
information on Alice’s choice, in the absence of any classical
or quantum communication from her to him. It turns out that
he can indeed gather information on a bit’s conclusiveness and
hence infer if that particular bit is more or less likely to be a
key element Alice knows.

The simplest attack for Bob is to send states other than
those he announces, for instance, a state |↗〉 that is exactly
intermediate between |↑〉 and |→〉, while announcing a pair
{|↑〉,|→〉}. Alice’s probabilities to measure |↓〉 or |←〉 are
largely reduced. Indeed, she will find a probability of only
14.64% to have such a conclusive result. Likewise sending the
state |↙〉 (orthogonal to |↗〉) while announcing {|↑〉,|→〉}
will raise the probability to interpret the result as conclusive to
85.36%. Bob can thus bias the probability of conclusive results
for Alice continuously between the above limits. However,
every such attack will introduce errors, as Bob cannot predict
her outcome with certainty. In the example above, Alice
registering |↓〉 and |←〉, i.e., both bit values, are equally likely
events, and Bob’s bit error rate will therefore be as high as 50%.
This evident example shows that Bob can gain information on
the conclusiveness of Alice’s bits but will then lose information
on the bit values she has recorded.

The presented attack is closely related to an attack that
uses entanglement. Bob prepares a state of two qubits 1√

2
{| ↑

〉A|R0〉B + | →〉A|R1〉B}, where the first qubit is sent to Alice
and the second is kept in Bob’s register (with 〈R0|R1〉B = 0).
Bob announces having sent |↑〉 or |→〉. Once Alice has
successfully measured and accepted her qubit, Bob can decide
if he wants to measure honestly, i.e., recover the sent bit value,
or gain some information on the conclusiveness of Alice’s
measurement. In order to proceed honestly Bob measures
his register in the basis {|R0〉,|R1〉}, which tells him which
of the two announced states has actually been sent [24]. He
then knows which bit value Alice will record in case of a
conclusive outcome, but has gained no improved estimation
of the likelihood for this to happen. In contrast, measuring
in the {(|R0〉 + |R1〉)/

√
2,(|R0〉 − |R1〉)/

√
2} basis provides

him with likelihood information on the conclusiveness of
a bit, but clearly yields no information at all on the sent
bit value.

This second measurement can also be seen from another
angle. If Alice has obtained a conclusive result (probability
1/4) Bob’s register is in the state

ρc =
(

1/2 0

0 1/2

)
;

if Alice’s measurement was nonconclusive (probability 3/4)
he has

ρn =
(

1/2
√

2/3√
2/3 1/2

)
.

As ρc �= ρn the protocol is not perfectly concealing. Using the
criteria of Refs. [20,21] one can show that these two density

matrices cannot be discriminated unambiguously for the
single-qubit case. The best chance to guess the state correctly
is 85.36%, as for the previous attack. The second given
measurement basis does indeed constitute Helstrom’s minimal
error probability measurement [22,23] for the conclusiveness
of one of Alice’s bits. As a matter of fact, one can show that,
given an arbitrary mixed qubit state, the likelihood to measure
a conclusive result will be confined by the very same bounds
(85.36% and 14.64%). No qubit state can yield only conclusive
results upon the above measurement, or yield only inconclusive
results. This individual attack is therefore optimal, yields
information on the bit’s conclusiveness, and completely erases
the bit value information from Bob’s register. This last point
means that Bob will not know Kf correctly—a cheating
Bob can then be caught when providing wrong answers
[13]. In principle these results can be generalized to joint
measurements on several qubits; however, these complicated
attacks are beyond the scope of this paper. Instead we
now clarify the conceptual reason why it is impossible for
Bob to have both the correct bit value and conclusiveness
information.

Let us suppose that Bob can gain information on the
conclusiveness of one of Alice’s elements of the raw key, either
by construction of the sent state or by some measurement
performed on his register at the end of the protocol. Let
us characterize this information by pc, the probability with
which Bob correctly guesses that Alice has a conclusive result.
(Remember that this likelihood is physically bounded by pc �
0.8536 if a single qubit is sent.) Let us also assume that, either
by construction of the state or by some second measurement,
Bob can also guess the bit value b Alice has recorded (if
her measurement was conclusive) and is correct about it with
the probability pb. Recalling the way Alice interprets her
measurement results in step 5 of the protocol, it is clear that, if
Bob correctly guesses that Alice’s result was indeed conclusive
and correctly guesses which bit value she has obtained, then
he also correctly guesses which measurement basis she has
used for this qubit in step 2. However, since there is no com-
munication whatsoever from Alice to Bob about her choice of
basis, the no-signaling principle dictates that his probability
to guess her basis correctly has to be equal to 1/2. Otherwise
the procedure would allow Alice to send signals to Bob that
are faster than the speed of light. This immediately implies
the bound

pc × pb � 1/2.

The inequality arises because even for inconclusive results
Bob has a chance to guess Alice’s basis correctly. This
simple upper bound illustrates the crucial point: Whenever
Bob tries to alter the conclusiveness probability of certain
bits in order to better judge which bits of Kf are (un)known
to Alice, he will necessarily lose information on the bit
value Alice records in order to comply with the no-signaling
principle. This introduces errors in Kf and hence also in the
encrypted database; i.e., he will run the risk of giving wrong
answers.

This shows that our protocol is cheat sensitive in the spirit of
Refs. [10,13]. In our scenario, Bob sells his database bit by bit.
Systematic cheating and hence giving wrong answers will ruin
his reputation as a database provider. As we already mentioned
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above, one can now even make use of the fact that Alice
normally obtains additional database elements. If she buys
those elements from Bob in a regular, nonprivate way, she can
use them to check Bob’s honesty [25]. By doing so, Alice has a
powerful prompt privacy check at hand. One can thus turn what
seems to be a flaw into an advantage, in order to make full use of
the privacy, which, as we have seen, is guaranteed by the impos-
sibility of superluminal communication in quantum physics.

VII. OUTLOOK AND CONCLUSIONS

The above discussion has shown that practically very
interesting levels of privacy in database queries can be
achieved for both sides. The security of the presented protocol
relies on fundamental physical principles (the impossibility
to deterministically discriminate nonorthogonal states and
the impossibility of superluminal communication), rather
than on assumptions on quantum storage limitations [15],
mathematical complexity [3], or noncommunication between
servers in multiserver protocols [4].

We have already emphasized that the protocol is completely
loss resistant. We believe that error correction is possible as
well. This requires additional classical two-way communica-
tion and still needs to be elaborated in more detail. Moreover,
it is clear that the protocol can be implemented with weak
coherent pulses as well. The acceptable amount of loss then
depends on the mean photon number per pulse, in order
to safeguard database security. High mean photon numbers
largely facilitate unambiguous state discrimination for Alice,
if one assumes that she is in control of the transmission

line. Finally, it is possible to improve database security by
more sophisticated postprocessing, e.g., by taking a couple
of strings created in our probabilistic protocol (with P0 
 1)
and allowing Alice to combine them, i.e., to freely choose
relative shifts to add them bitwise. Simulations show that
she will be left with knowing exactly one bit of the final
key with overwhelming probability. Both error correction
and the described way of achieving tighter database security
complicate the security analysis due to the necessary two-way
communication.

The proposed protocol can be realized with any existing
QKD system that is compatible with the SARG04 protocol.
Besides ensuring loss tolerance, this also makes it easy to scale
up to large databases. We hope that our proposal will stimulate
further work to clarify the open questions. Besides a more in-
depth study of its security, these include the optimal classical
procedures for oblivious key generation and error correction.
We think that there is the potential for private queries to become
a genuine application of quantum information technology in
the footsteps of QKD.
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