68 research outputs found

    Recently listed Stockholm convention POPs: Analytical methodology, occurrence in food and dietary exposure

    Get PDF
    In recent years, the Stockholm Convention has listed an additional set of persistent organic pollutants (POPs) for elimination or restricted use/release. Data on the occurrence of these contaminants in food is scarce. Validated analytical methodology was developed to investigate the occurrence of hexachlorobutadiene (HCBD), pentachlorobenzene (PCBz), hexachlorobenzene (HCB) pentachlorophenol (PCP) and polychlorinated naphthalenes (PCNs) in 120 retail foods and 19 total diet study samples. The foods covered the range of commonly consumed dietary items including dairy products, eggs (hen and other species), poultry, meat, fish, vegetables, etc. HCBD showed a low frequency of detection, whereas PCBz, HCB and PCNs occurred in most samples (ranges: <0.01 to 0.19 μg/kg; <0.01 to 3.16 μg/kg and 0.1 to 166 ng ΣPCNs/kg respectively). PCP (<0.01 to 1.9 μg/kg) was detected more frequently in meat products, offal and eggs. Fish, shellfish, eggs from all species, animal fats, meat, offal and meat products showed higher contamination levels, which is normal when investigating lipophilic POPs. These levels of occurrence are similar to more recently reported literature levels but perhaps lower, relative to historic data. This is not unexpected, given the restrictions/limitations on these chemicals within the UK and Western Europe. The estimated human exposure to population groups through dietary intake is correspondingly low and based on current toxicological knowledge, the levels in the examined samples do not suggest a cause for health concern. The data also provide a current baseline for HCBD, PCBz and PCP, and update existing data for PCN and HCB occurrence in foods

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 25, Revision 2 (FGE.25Rev2): Aliphatic and aromatic hydrocarbons from chemical group 31

    Get PDF

    Hexachloronaphthalene

    No full text

    The Rites of the Sacrament of Marriage – Implementation of the Code of Canon Law

    No full text
    The liturgy of the Church is an expression of his life with Christ, it uses natural signs such as: wine, water, light, fire, smoke, oil, salt, and ash. It is through Christ, that they are given new meaning. This meaning is to glorify God and sanctify man. The sacramental ordinances are determined by ecclesiastical law which follows the nature and life of the Church. The ordinances of the Church, through the visible, direct us to the invisible. Behind what is visible there is no action or God's grace. These signs of God's presence are symbols, which St. Augustine calls the encounter between God and man in the world of signs and symbols, a Sacrament. The sacraments of the Church are graces given by God to man for his sanctification. In sacramental rites, the Church can change form, but never in essence and matter. The matter of the sacrament of marriage is between a woman and a man. The rites of the sacrament of marriage, were announced in 1969, are used in Poland, however, it has been adapted to the new Code of Canon Law of 1983. Jesus instituted the sacrament of marriage. Marriage should be celebrated at Holy Mass and is characterized by unity and indissolubility. During the rites of the sacrament of marriage, the Church then asks what is the will of the person is for getting married. The couple then join their right hands and place the wedding rings on each other’s ring finger. The effects of the sacrament of marriage, which express the Rites of the Sacrament of Marriage, are: marriage community, grace and family. The liturgy with the sacrament of marriage speaks of the sanctity of marriage through the beauty of its celebration

    Tłumacz jako pośrednik między językami i kulturami na przykładzie dwóch polskich przekładów powieści Lewisa Carrolla Alicja w krainie czarów

    No full text
    Przedmiotem niniejszej pracy jest omówienie problemu przekładu literatury dziecięcej na przykładzie „Alicji w Krainie Czarów” Lewisa Carrolla oraz przeprowadzenie analizy porównawczej wybranych dwóch przekładów na język polski. Pierwszy rozdział przedstawia pochodzenie, historię i wyjątkowość źródłowego utworu. Ponadto rozważony zostaje wpływ epoki wiktoriańskiej na tekst. W drugim rozdziale omawiam powstawanie i rozwój literatury dziecięcej oraz studium przekładu (Children’s Literature Translation Studies). W tej części podkreślam funkcje literatury dla dzieci i trudności, jakie stawia ona przed tłumaczką/tłumaczem. Analizuję również teoretyczne aspekty języka będące szczególnie ważne w tłumaczeniu literatury dziecięcej, takie jak wierność oryginałowi oraz płynność tekstu. Rozdział trzeci poświęcony jest roli kultury w przekładzie. Przedstawiam w nim wybrane teorie, mianowicie teorie skoposu i polisystemów. Rozdział czwarty dotyczy językowych aspektów przekładu literatury dziecięcej. Ostatni rozdział zawiera szczegółową analizę porównawczą dwóch polskich przekładów powieści Lewisa Carrolla: Antoniego Marianowicza z 1995 r. i Macieja Słomczyńskiego z 1965 r., ze szczególnym uwzględnieniem docelowej grupy odbiorców. Wyniki mojej analizy ukazują istotne różnice w przekładach wynikające z wyboru docelowego odbiorcy oraz podkreślają rolę tłumacza jako pośrednika między językami i kulturami.The purpose of this thesis is to discuss the issue of translating children’s literature by focusing on the example of Alice’s Adventures in Wonderland by Lewis Carroll and by conducting a comparative study of its two selected Polish translations. The first chapter focuses on the origins, history, and originality of the source book. It also presents the influence of the Victorian Era on the text. The second chapter examines the emergence and development of children’s literature and Children’s Literature Translation Studies. In this part, I emphasize the functions of this literature and the challenges it poses for the translator. I examine the theoretical aspects that are particularly important in translating children’s literature, such as faithfulness to the original, fluency, and rhythm of the text. Chapter Three concentrates on the role of culture in translation. Specific theories, that is Skopos and Polysystem theory are analyzed. Chapter Four is devoted to the linguistic aspects of translating children’s literature. The final, fifth, chapter provides a detailed comparative analysis of two Polish translations of Carroll’s novel: by Antoni Marianowicz (1995) and Maciej Słomczyński (1965), with a special focus on the target reader. The results of my research indicate differences in translation resulting from the choice of the target reader and emphasize the significance of the translator’s role as an intermediary between languages and cultures

    Ethyl silicate : documentation of proposed values of occupational exposure limits (OELs)

    No full text
    Ortokrzemian tetraetylu jest bezbarwną cieczą o słabo wyczuwalnym zapachu. Związek ten znalazł zastosowanie w różnych gałęziach przemysłu, np.: farb i lakierów, w przemyśle chemicznym (w chemii powłok mających także kontakt z żywnością), farmaceutycznym oraz nanotechnologii i przemyśle półprzewodników. Stosowany jest także jako preparat utwardzający (wzmacniający):kamień naturalny, terakotę, stiuk, freski i glinę, a także jest wykorzystywany przy produkcji cegieł oraz wodoodpornych i kwasoodpornych zapraw murarskich i cementu. W Polsce w 2007, 2010 oraz w 2013 r. nie zgłaszano – zgodnie z informacją Państwowej Inspekcji Sanitarnej – pracowników zatrudnionych na stanowiskach pracy, gdzie występowało przekroczenie obowiązującej wartości najwyższego dopuszczalnego stężenia (NDS = 80 mg/m3) dla ortokrzemianu tetraetylu. Ortokrzemian tetraetylu dobrze się wchłania: przez drogi oddechowe, z przewodu pokarmowego i słabo przez skórę. U pracowników narażonych na ortokrzemian tetraetylu związek ten wykazywał działanie drażniące na oczy i błonę śluzową nosa. Nie ma w dostępnym piśmiennictwie danych dotyczących przewlekłego działania ortokrzemianu tetraetylu na ludzi. Ostra toksyczność ortokrzemianu tetraetylu u zwierząt doświadczalnych wyrażona medianami dawek letalnych jest stosunkowo mała. Związek wykazuje łagodne działanie drażniące na oczy królika, nie działa drażniąco na skórę i nie wykazuje działania uczulającego. Nie ma danych dotyczących toksyczności przewlekłej ortokrzemianu tetraetylu. Na podstawie wyników badań krótkoterminowych i podprzewlekłych na myszach i szczurach narażonych na ortokrzemian tetraetylu inhalacyjnie oraz po podaniu innymi drogami wykazano, oprócz zmian martwiczych w nabłonku węchowym jamy nosowej (u myszy), także zmiany w wątrobie (u szczurów) oraz w nerkach, które obejmowały zmiany martwicze i śródmiąższowe zapalenie kanalików nerkowych. W przypadku krótkoterminowego narażenia na ortokrzemian tetraetylu o dużych stężeniach u szczurów obserwowano również działanie toksyczne związku na płuca. Ortokrzemian tetraetylu nie wykazywał działania mutagennego w testach Amesa. Na podstawie nielicznych danych wykazano, że związek nie działał na rozrodczość i nie powodował toksyczności rozwojowej. Ortokrzemian tetraetylu nie jest klasyfikowany przez IARC pod względem działania rakotwórczego. Z przedstawionych w dokumentacji danych wynika, że u ludzi głównym skutkiem działania toksycznego ortokrzemianu tetraetylu o dużych stężeniach (powyżej 2000 mg/m3) było działanie drażniące na oczy i błonę śluzową nosa, natomiast w przypadku zwierząt doświadczalnych – działanie nefrotoksyczne oraz uszkodzenie nabłonka węchowego jamy nosowej. Za podstawę obliczenia wartości NDS ortokrzemianu tetraetylu przyjęto jego działanie nefrotoksyczne. W celu wyznaczenia wartości NOAEL przyjęto wyniki z dwóch niezależnych doświadczeń inhalacyjnych na myszach. Narażanie myszy na ortokrzemian tetraetylu o stężeniu 430 mg/m3 (50 ppm) przez 90 dni lub przez 2 i 4 tygodnie nie spowodowało działania nefrotoksycznego. Związek o większych stężeniach działał na nerki – ortokrzemian tetraetylu o stężeniu 760 mg/m3 (88 ppm) spowodował istotne zmniejszenie masy nerek, a o stężeniu 865 mg/m3 (100 ppm) spowodował u 20% zwierząt śródmiąższowe zapalenie kanalików nerkowych. Autorzy dokumentacji zaproponowali przyjęcie stężenia wynoszącego 430 mg/m3 za wartość NOAEC ortokrzemianu tetraetylu dla skutków nefrotoksycznych obserwowanych u myszy. Po przyjęciu odpowiednich współczynników niepewności o łącznej wartości 8, wyliczona wartość NDS ortokrzemianu tetraetylu wynosi 54 mg/m3. Biorąc pod uwagę, że w 2008 r. w SCOEL przyjęto stężenie 44 mg/m3 ortokrzemianu tetraetylu za narażenie 8-godzinne TWA, a także wychodząc z tych samych skutków (nefrotoksyczność) oraz wartości NOAEC przyjętej na podstawie tych samych doświadczeń, zaproponowano przyjęcie stężenia 44 mg/m3 związku za wartość NDS ortokrzemianu tetraetylu. Substancja znajduje się w dyrektywie ustalającej IV wykaz wskaźnikowych wartości narażenia zawodowego bez ustalenia wartości krótkoterminowej STEL. Zaproponowana wartość NDS dla ortokrzemianu tetraetylu powinna zabezpieczyć pracowników przed działaniem układowym oraz potencjalnym działaniem drażniącym związku. Nie znaleziono podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) oraz wartości dopuszczalnego stężenia w materiale biologicznym (DSB) ortokrzemianu tetraetylu.Ethyl silicate is a colorless liquid with a slightly perceptible odor. This compound finds numerous applications in many industrial branches, e.g., paint and lacquer, chemical (in chemical coatings which has a contact with food), pharmaceutical, semiconductor and in nanotechnology. It is also used as an agent to harden natural stone, terracotta, artificial marble, frescoes and clay and in production of waterproof and acidproof mortar and cements. According to the State Sanitary Inspection data, in Poland in 2007, 2010 and 2013, there were no workers exposed to ethyl silicate at levels exceeding maximum allowable concentration (MAC) of 80 mg/m3 . Ethyl silicate is well absorbed via respiratory and alimentary tracts, but its absorption through the skin is rather poor. In workers exposed to ethyl silicate, irritating properties to eye and nasal mucosa have been observed. Data on chronic ethyl silicate effects in humans are not available in the literature. In laboratory animals, ethyl silicate acute toxicity expressed in median lethal doses is relatively low. Ethyl silicate shows a mild irritating effect on rabbit’s eyes, it does not cause dermal irritation or allergic effects. There are no data on ethyl silicate chronic toxicity. Short-term and subchronic studies performed on mice and rats exposed to ethyl silicate through inhalation and after its administration in other ways showed except for necrotic lesions in the olfactory epithelium of nasal cavity (in mice), changes in the liver (in rats) and kidneys. The latter comprised interstitial inflammation and necrotic lesions in renal tubules. Short-term exposure of rats to high ethyl silicate concentrations induced its toxic effect also on lungs. Ethyl silicate mutagenic effect has not been revealed in Ames tests. On the basis of few data, it has been proved that this compound did not cause reproductive and developmental toxicity. This compound has not been categorized by the International Agency for Research on Cancer (IARC) with respect to its potential carcinogenic risk. The presented evidence shows that the major toxic effect of ethyl silicate at high concentrations (over 2000 mg/m3 ) is eye and nasal mucosa irritation in humans, whereas the nephrotoxic effect and damage to the olfactory epithelium of nasal cavity are observed in laboratory animals. On the basis of the nephrotoxic effect of ethyl silicate, its maximum allowable concentration (MAC) was calculated. The results of two independent inhalation experiments in mice were used to determine NOAEL value. Inhalation exposure of mice to ethyl silicate at concentration of 430 mg/m3 (50 ppm) for 90 days or 2 and 4 weeks did not cause nephrotoxic effects. This compound at higher concentrations caused nephrotoxicity. Exposure to concentration of 760 mg/m3 (88 ppm) caused significant decrease in kidney weight, and after exposure to concentration of 865 mg/m3 (100 ppm) in 20% of animals interstitial inflammation of kidney tubules have been observed. The authors of the documentation proposed to adopt a concentration of 430 mg/m3 as NOAEC value of ethyl silicate for the nephrotoxic effects observed in mice. After adopting relevant uncertainty coefficients (total value, 8) the calculated MAC value for ethyl silicate is 54 mg/m3 . Taking into consideration the fact that in 2008 SCOEL proposed a concentration of 44 mg/m3 as 8-h TWA for ethyl silicate, which was based on the same effects (nephrotoxicity) and NOAEC value adopted from the same experiments, it was proposed to assume a concentration of 44 mg/m3 as MAC value of ethyl silicate. This substance is included in the directive establishing the IV list of indicative occupational exposure limit values without establishing a short-term STEL value. The proposed MAC value for ethyl silicate should protect workers against systemic effect and potential irritating effect. There are no reasons for adopting STEL and BEI values for this compound

    Nitrotoluene

    No full text
    Nitrotoluen (NT) jest mieszaniną trzech izomerów: 2-, 3- i 4-nitrotoluen, które nie występują w stanie naturalnym. Nitrotoluen jest wykorzystywany do produkcji azowych i siarkowych barwników do bawełny, wełny, jedwabiu, skóry i papieru, a także jest stosowany w rolnictwie, fotografii, przemyśle farmaceutycznym oraz przy produkcji gum. Nie ma udokumentowanych danych dotyczących zatruć ostrych, przewlekłych oraz danych epidemiologicznych osób narażonych na nitrotoluen. Z badań toksyczności ostrej na zwierzętach doświadczalnych wynika, że zakresy wartości DL50 dla szczurów i myszy po podaniu dożołądkowym (per os) dla izomerów 2- i 3-NT wynosiły 891 ÷ 2463 mg/kg m.c., natomiast dla 4-NT – 1960 ÷ 7100 mg/kg m.c. Z badań toksyczności podprzewlekłej (13 tygodni) przeprowadzonych na dwóch gatunkach gryzoni obu płci (myszy i szczury) wynika, że najbardziej toksycznym izomerem jest 2-NT. U zwierząt po 13 tygodniach narażania na 2-NT wykazano: niewielki spadek liczby erytrocytów (RBC), zmniejszone stężenie hemoglobiny, wzrost liczby retikulocytów, leukocytów, wzrost średniej objętości krwinek czerwonych oraz wzrost stężenia methemoglobiny. Wszystkie badane stężenia izomeru powodowały zaburzenia czynności wątroby, śledziony i nerek. U większości narażanych zwierząt stwierdzono zmiany w wątrobie obejmujące przerost i wakuolizację hepatocytów, a także pojedyncze ogniska zapalne zbudowane głównie z eozynofilów. Stwierdzono ponadto istotnie wzmożoną proliferację komórek hematopoetycznych w śledzionie i w szpiku kostnym. Z badań przewlekłych (2-lata) przeprowadzonych przez NTP (2002) dla 2-NT i 4-NT na my-szach i szczurach obu płci wynika, że 2-NT wykazywał znacznie większą toksyczność niż 4-NT. 2-NT zarówno u myszy, jak i szczurów powodował zmniejszenie przyrostu masy ciała, a w badaniach histopatologicznych stwierdzono występowanie nowotworów: skóry, sutka i wątroby u szczurów obu płci, natomiast u samców także międzybłonka pochewki jądra i płuc. Działanie rakotwórcze 2-NT stwierdzono również u myszy obu płci, u których zmiany nowotworowe były zlokalizowane w układzie krążenia, jelicie grubym i wątrobie. Po podaniu 4-NT stwierdzono u szczurów samców jedynie pojedyncze przypadki nowotworów skóry oraz u samic przypadki raków gruczołu łechtaczkowego. U myszy skutki kancerogenne stwierdzono tylko u samców (raki oskrzelikowo-pęcherzykowe). Z analizy rodzaju i liczby obserwowanych nowotworów można wnioskować, że ten typ nowotworów nie powinien występować w wyniku narażenia zawodowego ludzi i nie może być podstawą do analizy ryzyka. Z uwagi na brak wystarczających dowodów działania rakotwórczego 2-NT na ludzi i ograniczone dowody działania rakotwórczego na zwierzęta doświadczalne Międzynarodowa Agencja Badań nad Rakiem (IARC) w 1996 r. zaliczyła nitrotoluen, na podstawie wyników eksperymentu 13-tygodniowego, do grupy 3., czyli związków nieklasyfikowanych jako kancerogeny dla ludzi (wyniki 2-letnich badań 2- i 4-NT wykonane na szczurach i myszach przez NTP zostały opublikowane w 2002 r.). Ze względu na brak badań toksyczności dla mieszaniny wszystkich trzech izomerów, do wyliczenia wartości NDS przyjęto wyniki 2-letnich badań dla najbardziej toksycznego izomeru, tj: 2-nitro-toluenu. W tym eksperymencie 2-NT podawano szczurom obu płci w paszy o stężeniach: 625; 1250 lub 2000 ppm przez 105 tygodni. Dawkę najmniejszą (625 ppm w paszy) odpowiadającą 25 mg/kg m.c./dzień dla samców i 30 mg/kg m.c./dzień dla samic przyjęto za wartość LOAEL. Ze względu na fakt, iż samce były znacznie bardziej wrażliwe niż samice na działanie 2-NT do obliczeń wartości NDS przyjęto dawkę 25 mg/kg m.c./dzień ustaloną dla samców za wartość LOAEL. Przyjmując cztery współczynniki niepewności, obliczono wartość NDS równą 11 mg/m3. Zaproponowana wartość NDS dotyczy poszczególnych izomerów nitrotoluenu (2-NT, 3-NT i 4-NT) oraz ich mieszaniny. Normatyw oznaczono literami „Sk‖ – substancja wchłania się przez skórę. Ze względu na działanie methemoglobinotwórcze zaproponowano wartość dopuszczalnego stężenia w materiale biologicznym (DSB) taką samą jak dla wszystkich substancji methemoglobinotwórczych, czyli 2% MetHb we krwi.Nitrotoluene (NT) is a mixture of three isomers: 2-, 3- and 4-NT; it does not occur in a natural form. NT is used in the production of azo and sulfur dies for cotton, wool, silk, leather and paper. It is also used in the agriculture, photographic and pharmaceutical industries, as well as in the production of rubber. There are neither documented data on acute and chronic toxicity, nor epidemiological data on NT-exposed persons. The animal (rats and mice) studies of acute toxicity have revealed the following ranges of DL50 values after per os administration of isomers: 891÷2463 mg/kg body mass (b.m.) for 2- and 3-NT and 1960÷7100 mg/kg b.m. for 4-NT. Studies of subacute toxicity (13 weeks), performed on two species of rodents (mice and rats) of both genders, showed that 2-NT is the most toxic isomer. Thirteen weeks of 2-NT exposure caused an insignificant decrease in the number of erythro-cytes and in the concentration of hemoglobin, an enhanced number of reticulocytes and leuco-cytes, a diminished mean volume of erythrocytes and an augmented concentration of methe-moglobins. All the isomer concentrations induced functional disorders in the liver, spleen and kidneys. Most of the exposed animals showed lesions in the liver, mainly manifested by hyper-throphy and vacuolization of hepatocytes, and single inflammatory foci mostly composed of eosinophils. In addition, a significantly increased proliferation of hematopoietic cells in the spleen and bone marrow was observed. A long-term (2-year) study, carried out by the NTP (2002) on mice and rats (of both genders) exposed to 2-NT and 4-NT, have revealed a significantly higher toxicity of 2-NT than that of 4-NT. In both mice and rats, 2-NT decreased body mass gain. Moreover, subcutaneous skin carcino-ma, liver (hepatocellular) adenoma and mammary cancer were revealed on histopathological examination. In addition, mesothelioma of the tunica vaginalis testis and lungs were observed in males. A carcinogenic effect of 2-NT has also been found in mice of both genders, the ob-served neoplastic lesions were located in the circulatory system, large intestine and liver. Only single cases of subcutaneous carcinoma in male and clitoral carcinoma in female rats were found after 4-NT administration. In mice, carcinogenic effects of 4-NT administration were observed only in males (alveolar/bronchiolar carcinoma). Having analyzed the type and num-ber of the observed carcinomas, it can be concluded that this type of neoplasms due to occupa-tional exposure should not occur in humans and it cannot provide the basis for risk assessment. In 1996, in view of insufficient evidence that 2-NT is carcinogenic to humans on the basis of a 13-week experiment, IARC categorized nitrotoluene into group 3 — not classifiable as to its carcinogenicity to humans (the results of a 2-year study of 2- and 4-NT performed on rats and mice by NTP were published in 2002). Bearing in mind that no investigations on NT toxicity have been carried out to date, the results of a 2-year experiment for the most toxic isomer (2-NT) have been taken as a basis for calculat-ing the MAC value. In this experiment, 2-NT was administered to the rats (both genders) in their diet at three concentrations: 625, 1250 or 2000 ppm for 105 weeks. The lowest dose (625 ppm) that corresponded to 25 mg/kg body mass/day for males and 30 mg/kg body mass/day for females was accepted as the LOAEL value. Considering that males were much more sensitive to 2-NT effects than females, a dose of 25 mg/kg b.m./day set for males as the LOAEL value, was taken as a basis for the calculation of the MAC value. Having assumed four coefficients of un-certainty, the MAC value for NT was calculated at the level of 11 mg/m3. The recommended MAC values apply to individual NT isomers (2-NT, 3-NT and 4-NT) and to their mixture as a whole. It has been suggested to mark NT with ―Sk‖ — skin absorbed substance, and in view of its methemoglobinogenic effect, to adopt 2% MetHb in blood as the biological exposure index (BEI), like for all methemoglobinogenic substances

    Phenylhydrazine and its salts – calculated on phenylhydrazine. Documentation of proposed values of occupational exposure limits (OELs)

    No full text
    Fenylohydrazyna w temperaturze pokojowej jest bezbarwną lub żółtą oleistą cieczą, a w niższych temperaturach występuje w postaci krystalicznej. Fenylohydrazyna jest stosowana w syntezie organicznej jako silny środek redukujący lub jako półprodukt w syntezie innych związków chemicznych (np. barwniki, leki). Fenylohydrazyna jest również stosowana jako odczynnik chemiczny. Na początku XX wieku fenylohydrazyna była stosowana jako lek w czerwienicy prawdziwej oraz innych zaburzeniach krwi. Zawodowe narażenie na fenylohydrazynę i jej sole może występować podczas: produkcji, dalszego przerobu i dystrybucji tych związków, a także podczas ich stosowania. W Polsce w 2014 r. na fenylohydrazynę było narażonych 711 osób (w tym 531 kobiet). Według danych GIS tylko 2 pracowników było narażonych na stężenie fenylohydrazyny w powietrzu w zakresie > 0,1 ÷ 0,5 obowiązującej wartości najwyższego dopuszczalnego stężenia (NDS = 20 mg/m3 ). Fenylohydrazyna jest klasyfikowana jako substancja toksyczna po podaniu drogą pokarmową, w kontakcie ze skórą i w następstwie wdychania. W dostępnej literaturze opisano kilka przypadków zatrucia ludzi fenylohydrazyną drogą inhalacyjną i przez skórę. Niepożądane skutki przewlekłego działania fenylohydrazyny u pacjentów stosujących ją jako lek to: postępująca niedokrwistość hemolityczna z hiperbilirubinemią i urobilinemią, obecność ciałek Heinza w krwinkach czerwonych, upośledzenie funkcji nerek i wątroby jako objaw wtórny do działania hemolitycznego fenylohydrazyny. Czasami występowała methemoglobinemia i leukocytoza. Najczęstsze objawy zatrucia to: zawroty głowy, biegunki, ogólne osłabienie, zmniejszenie ciśnienia krwi. Fenylohydrazyna działa drażniąco na skórę. Opisano także kilka przypadków reakcji nadwrażliwości skóry na fenylohydrazynę i jej chlorowodorek. Wykazano, że fenylohydrazyna daje reakcje krzyżowe z solami hydrazyny. U zwierząt głównymi objawami ostrego zatrucia fenylohydrazyną było tworzenie znacznych ilości methemoglobiny i powstawania jej następstw, tj.: hemoliza, tworzenie ciałek Heinza, retikulocytoza, hiperplazja szpiku kostnego, powiększenie śledziony i uszkodzenie wątroby. Obserwowano także pobudzenie motoryczne (ruchowe) oraz drgawki toniczno-kloniczne. W wyniku powtarzanego nara- żenia stwierdzono, że fenylohydrazyna oprócz niedokrwistości hemolitycznej powoduje również zaburzenia hemostazy oraz prowadzi do ostrej zakrzepicy płuc. Dostępne dane nie są wystarczające do określenia zależności dawka-skutek ani do ustalenia wartości NOAEL. Fenylohydrazyna jest mutagenem w warunkach in vitro. Niektóre dowody wskazują na jej aktywność genotoksyczną w warunkach in vivo (metylacja i fragmentacja DNA). Fenylohydrazyna i jej sole zostały sklasyfikowane jako substancje mutagenne kategorii zagrożenia 2. W dostępnym piśmiennictwie i w bazach danych nie znaleziono informacji dotyczących działania rakotwórczego fenylohydrazyny i jej soli na ludzi. Wykazano natomiast działanie rakotwórcze fenylohydrazyny na zwierzęta doświadczalne. Narażenie myszy drogą pokarmową powodowało wystąpienie nowotworów płuc oraz nowotworów naczyń krwionośnych. Międzynarodowa Agencja Badań nad Rakiem (IARC) nie sklasyfikowała fenylohydrazyny i jej soli pod kątem działania rakotwórczego. W Unii Europejskiej fenylohydrazynę i jej sole sklasyfikowano jako substancje rakotwórcze kategorii zagrożenia 1.B. Nie ma wystarczających danych dotyczących wpływu fenylohydrazyny na rozrodczość i toksyczność rozwojową, aby można było ocenić, czy skutki takie mogą wystąpić u ludzi narażonych na fenylohydrazynę i jej sole. Na podstawie obserwowanych skutków ogólnoustrojowych/układowych u ludzi i zwierząt nara- żonych na fenylohydrazynę i jej sole można przyjąć, że związki te są wchłaniane do organizmu: drogą inhalacyjną i pokarmową, przez skórę oraz po podaniu parenteralnym. W dostępnym piśmiennictwie nie znaleziono danych ilościowych dotyczących wydajności wchłaniania poszczególnymi drogami. Główne szlaki metaboliczne fenylohydrazyny to hydroksylacja do p-hydroksfenylohydrazyny oraz powstawanie fenylohydrazonów w reakcji z naturalnymi keto-kwasami. Metabolity w postaci glukuronidów są wydalane głównie z moczem. Istniejące dwa badania rakotwórczego działania chlorowodorku fenylohydrazyny wykazały, że związek podawany drogą pokarmową powodował istotny wzrost powstawania nowotworów płuc lub nowotworów naczyń krwionośnych. W drugim badaniu, pomimo dłuższego czasu narażenia, nie obserwowano istotnego wzrostu nowotworów płuc. Mimo tego, że wyniki obu tych badań wydają się mało wiarygodne w świetle obecnych kryteriów i są ograniczone tylko do jednego gatunku zwierząt (myszy) i jednej dawki, to jednak na ich podstawie Unia Europejska zaklasyfikowała fenylohydrazynę jako związek rakotwórczy kategorii zagrożenia 1B z przypisanym zwrotem wskazującym rodzaj zagrożenia H350 – może powodować raka. Z przeprowadzonej ilościowej oceny rakotwórczości fenylohydrazyny wynika, że pracy w narażeniu na fenylohydrazynę, równym dotychczasowej wartości NDS w Polsce (20 mg/m3 ) przez okres 40 lat pracy, odpowiada ryzyko wystąpienia raka płuca na poziomie 5,7 10-². Ryzyko takie jest nieakceptowalne. Z szacowania ryzyka nowotworowego wynika, że dotychczasowa wartość NDS dla fenylohydrazyny powinna zostać zmniejszona. Istniejąca baza danych dotycząca toksyczności fenylohydrazyny i jej soli jest niewystarczająca, aby można było wyprowadzić wartość NDS na podstawie wartości NOAEL/LOAEL. Fenylohydrazyna ze względu na mechanizm działania oraz główne skutki toksyczne (hematotoksyczność) ma profil toksykologiczny podobny do aniliny. Zaproponowano, aby wartość NDS dla fenylohydrazyny przyjąć analogicznie do wartości NDS aniliny, tj. 1,9 mg/m3 , co odpowiada wielkości ryzyka raka płuca w warunkach narażenia zawodowego na poziomie 5,4 10-³. Ze względu na wchłanianie dermalne fenylohydrazyny, zaproponowano oznaczenie normatywu zwrotem „skóra” – wchłanianie substancji przez skórę może być tak samo istotne, jak przy narażeniu drogą oddechową. Dodatkowo, ze względu na działanie: drażniące, uczulające, rakotwórcze i mutagenne fenylohydrazyny, zaproponowano oznakowanie literami: „I” – substancja o działaniu drażniącym, „A” – substancja o działaniu uczulającym, „Carc. 1B” – substancja rakotwórcza kategorii zagrożenia 1B oraz „Muta. 2” – substancja mutagenna kategorii zagrożenia 2. Nie ma podstaw do ustalenia najwyższej dopuszczalnej wartości chwilowej (NDSCh) oraz wartości dopuszczalnej w materiale biologicznym (DSB).Phenylhydrazine at room temperature is a colorless or yellow oily liquid, at lower temperatures it occurs in a form of a crystalline. Phenylhydrazine is used in an organic synthesis as a powerful reducing agent or as an intermediate in synthesis of other chemical compounds, such as dyes and drugs. Phenylhydrazine is also used as a chemical reagent. At the beginning of the 20th century, phenylhydrazine was used as a drug in polycythemia vera and other blood disorders. Occupational exposure to phenylhydrazine and its salts may occur during the production, further processing and distribution of these compounds, and also during their use. In 2014, 711 people were exposed to phenylhydrazine in Poland (including 531 women), of which 2 people only were exposed to phenylhydrazine in the air at a concentration range > 0.1–0.5 of the MAC value (20 mg/m3 ). Phenylhydrazine is classified as a toxic substance after oral administration, in contact with skin and after inhalation. The available literature describes several cases of human poisoning with phenylhydrazine with inhalation and through the skin. Adverse effects of phenylhydrazine exposure are progressive hemolytic anemia with hyperbilirubinaemia and urobilinemia, presence of Heinz bodies in red blood cells, impairment of renal and hepatic function as secondary symptom to the haemolytic activity of phenylhydrazine. Methemoglobinemia and leukocytosis sometimes occurred. General symptoms of poisoning included dizziness, diarrhea, general weakness and reduced blood pressure. Phenylhydrazine irritates the skin. Several cases of skin hypersensitivity reactions to phenylhydrazine and its hydrochloride have also been described. It has been shown that phenylhydrazine gives cross-reactions with hydrazine salts. In animals, the main symptoms of acute phenylhydrazine poisoning were the formation of significant amounts of methaemoglobin and its consequences: hemolysis, Heinz bodies formation, reticulocytosis, bone marrow hyperplasia, splenomegaly and liver damage. Motor excitation and tonic-clonic spasms were also observed. As a result of repeated exposure, it was found that phenylhydrazine also causes hemostatic disorders in addition to haemolytic anemia and leads to acute pulmonary thrombosis. The dose-effect relationship cannot be derived from existing data nor the NOAEL value be determined. Phenylhydrazine is an in vitro mutagen and some evidence points to its genotoxic activity in vivo (DNA methylation and fragmentation ). Phenylhydrazine and its salts have been classified as category 2 mutagenic substances. In the available literature and databases, no information was found on the carcinogenic activity of phenylhydrazine and its salts in humans. Carcinogenic activity of phenylhydrazine has been demonstrated in experimental animals. Exposure of mice via oral route resulted in the occurrence of lung tumors and tumors of blood vessels. The International Agency for Research on Cancer (IARC) does not classify phenylhydrazine and its salts as carcinogenic. In the European Union, phenylhydrazine and its salts have been classified as category 1B carcinogens. There is also insufficient data on the effect of phenylhydrazine on reproduction and developmental toxicity, so it is difficult to assess whether these effects may occur in humans exposed to phenylhydrazine and its salts. Based on the observed systemic effects in humans and animals exposed to phenylhydrazine and its salts, it can be assumed that these compounds are absorbed into the body by inhalation, oral route, through the skin and after parenteral administration. There are no quantitative data on the absorption efficiency of individual routes. The main metabolic pathways of phenylhydrazine are hydroxylation to p-hydroxyphenylhydrazine and formation of phenylhydrazones by reaction with natural keto-acids. Metabolites in the form of glucuronides are mainly excreted in the urine. The existing two studies of the carcinogenic activity of phenylhydrazine hydrochloride have shown that the compound administered via the oral route caused a significant increase in the formation of lung tumors or tumors of blood vessels. In the second study, despite the longer exposure time, no significant increase in lung cancer was observed. Although the results of both studies seem to be unreliable in the light of current criteria and are limited to one species (mice) only and one dose, on the basis of them, phenylhydrazine was classified in the EU as a carcinogen category 1B with the assigned phrase H350 ‒ may cause cancer. A quantitative evaluation of phenylhydrazine carcinogenicity was performed using data on the incidence of lung cancer in mice of both genders exposed to phenylhydrazine hydrochloride, administered intragastrically at 1 mg/day. The model adopted for calculations shows that exposure to phenylhydrazine, at the level of the adopted MAC value in Poland (20 mg/m3 ) over 40 years of work, corresponds to the risk of lung cancer at the level of 5.7 10-². Such risk is unacceptable. From the estimation of cancer risk, it appears that the current value of MAC for substance should be reduced. The existing database on the toxicity of phenylhydrazine and its salts is insufficient to derive a MAC value based on NOAEL/LOAEL values. Due to the mechanism of action and the main toxic effects (haematotoxicity), phenylhydrazine has an aniline-like toxicological profile. It was proposed that the MAC value for phenylhydrazine should be taken analogously to the MAC value for aniline, i.e. 1.9 mg/m3 , which corresponds to the risk of lung cancer in occupational exposure conditions of 5.4 10-³. Due to the dermal absorption of phenylhydrazine, the „skin” notation has been proposed (absorption through the skin may be as important as in the case of inhalation). Additionally, due to irritating, sensitizing, carcinogenic and mutagenic effects of phenylhydrazine, the normative should be marked with the letters „I” (substance with an irritating effect), „A” (a substance with sensitizing effect), Carc. 1B (carcinogenic substance category 1B) and Muta. 2 (mutagen category 2). There are no evidence to establish the STEL and BEI values

    Divinylbenzene

    No full text
    Diwinylobenzen (DVB) jest cieczą o jasnym, słomkowym kolorze. Techniczny preparat DVB jest mieszaniną składającą się z dwóch izomerów (meta i para) diwinylobenzenu i dwóch izomerów etylowinylobenzenu (EVB). Najczęściej oba związki występują w następującym układzie stechiometrycznym: 50 - 60% DVB i 45 - 50% EVB. Diwinylobenzen jest komonomerem do otrzymywania usieciowanych polimerów. Narażenie zawodowe na di winylobenzen występuje w przemyśle gumowym (przy produkcji gumy syntetycznej), w przemyśle tworzyw sztucznych (przy produkcji poliestrów, winylowych polimerów oraz tworzyw sztucznych), a także przy produkcji pestycydów, gdzie DVB jest stosowany jako stabilizator. Diwinylobenzen wchłania się dobrze przez drogi oddechowe i słabo przez skórę. U pracowników narażonych na diwinylobenzen powodował on słabe działanie drażniące układ oddechowy oraz skórę i oczy. Nie ma danych dotyczących przewlekłego działania DVB na ludzi. Ostra toksyczność diwinylobenzenu u zwierząt doświadczalnych jest stosunkowo mała. Związek wykazuje łagodne działanie drażniące na oczy królika, a w badaniach podprzewlekłych również słabe działanie drażniące na skórę. Nie ma danych dotyczących toksyczności przewlekłej. W badaniach krótkoterminowych na myszach narażonych inhalacyjnie na DVB przez tydzień wykazano, oprócz zmian degeneracyjnych i martwiczych w nabłonku węchowym jamy nosowej, cechy martwicy komórek wątrobowych i przejściowe zmiany zapalne w kanalikach nerkowych. DVB nie wykazywał działania mutagennego w testach Amesa. W dostępnym piśmiennictwie nie znaleziono danych na temat działania embriotoksycznego, fetotoksycznego i teratogennego diwinylobenzenu. Nie został on sklasyfikowany przez IARC pod względem działania rakotwórczego, a w Polsce nie określono dla DVB wartości najwyższego dopuszczalnego stężenia (NDS). Z uwagi na fakt, że diwinylobenzen występuje w mieszaninie z etylowinylobenzenem, omówione wcześniej skutki jego działania toksycznego dotyczą mieszaniny tego związku, nie ma natomiast danych dotyczących działania czystego DVB. Ze względu na podobieństwo DVB do styrenu zarówno strukturalne, jak i dotyczące przemian metabolicznych (przez reaktywne epoksydy), proponujemy przyjąć dla DVB taką samą wartość najwyższego dopuszczalnego stężenia jak dla styrenu, to jest wynoszącą 50 mg/m3. Zaproponowana wartość powinna zabezpieczyć pracowników przed potencjalnym działaniem układowym oraz działaniem drażniącym na błonyśluzowe. Nie ma podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) i wartości dopuszczalnego stężenia biologicznego (DSB) diwinylobenzenu.Divinylbenzene (DVB) is a liquid of light straw colour. Technical DVB preparation is a mixture consisting of divinylbenzene and ethylvinylbenzene (EVB) isomers (meta and para). Most frequently both compounds are found in the following stoichiometric mixture: 50 ÷ 60% DVB: 45 ÷ 50% EVB. Divinylbenzene is a co-monomer for the formation of network polymers. Occupational exposure to divinylbenzene is observed in the rubber industry (in the production of synthetic rubber), in the plastics industry (in the production of polyesters, vinyl polymers and plastics); as well as in the production of pesticides where DVB is used as a stabilizer. Divinylbenzene is well absorbed by airways and poorly by skin. In workers exposed to DVB, this compound demonstrates a weak irritating effect on the respiratory tract, on the skin and eyes. There is no data on a chronic effect of DVB on humans. The acute toxicity of divinylbenzene in experimental animals is relatively low. The compound demonstrates a slightly irritating effect on rabbit eyes and in subchronic investigations also a weak irritating effect on the skin. There is no data concerning chronic toxicity. In short-term experiments on mice exposed through inhalation to DVB for a week, apart from degenerative and necrotic lesions in nasal cavity olfactory epithelium, liver cells necrosis and temporary inflammatory changes in renal tubules were demonstrated. DVB did not show any mutagenic action in Ames tests. In available literature no data have been found on embryotoxic, fetotoxic or teratogenic effects of DVB. This compound is not classified by IARC as regards carcinogenic activity. In Poland a MAC value has not been established. Taking into account the fact that divinylbenzene is found in a mixture with ethylvinylbenzene, the abovementioned toxic action of DVB concerns a mixture of this compound, whereas there is lack of data on a pure DVB effect. Due to the similarity of DVB to styrene, both structural and concerning metabolism (by reactive epoxides), we suggest accepting the same MAC value for DVB as for styrene, that is 50 mg/m3. The suggested value should protect workers against potential systemic or irritating effects on mucosa. There are no bases for establishing STEL and BEI values
    corecore