11 research outputs found

    Effect of Polystyrene Microplastics in Different Diet Combinations on Survival, Growth and Reproduction Rates of the Water Flea (Daphnia magna)

    No full text
    Microplastic pollution is a problem not only in the marine environment but also in freshwater ecosystems. Water flea (Daphnia magna) is one of the most common omnivorous cladocerans in freshwater ecosystems. In this study, the potential effects of microplastics (fluorescent polystyrene beads with dimensions of 6 microns) on the survival, growth and reproduction of Daphnia magna were examined during 21 days of laboratory experiments. Microplastics (MPs) were observed to be ingested alone or along with either the microalgae Chlorella vulgaris (Cv) or baker’s yeast (By). D. magna fed exclusively with microplastics showed a drastic decline in survival similar to that in the starving group. The least growth in total length or width was observed in Daphnia specimens fed only MPs and the starved groups. Daphia fed with a mixture of MPs/Cv or MPs/By produced a significantly (p < 0.05) lower number of ephippia. Our results show that high concentrations of microplastics adversely affect Daphnia magna populations

    Marker pigments and carbon biomass of phytoplankton on the northeastern Mediterranean Sea coast

    No full text
    Marker pigments are used to determine taxonomic composition and biomass of microalgae in different oceanic regions. However, sometimes discrepancies are encountered between microscopy and marker pigment based approaches principally because of altering environmental factors influencing diversity of phytoplankton. In the present investigation, marker pigments from HPLC-CHEMTAX analysis concurrent with carbon biomass estimated by microscopy were investigated during 2015-2016 at weekly intervals in the eastern Mediterranean Sea coast. Counting nanoplankton (in particular non-calcifying haptophytes and prasinophytes) in live samples provided a better correlation between microscopy and pigment-based results than in fixed samples. Nanoplankton and picoplankton constituted ~56% of chlorophyll a based on HPLC-CHEMTAX analysis in the sampling location. Diatoms were the most prominent taxa based on both pigments and microscopy results in the study area. A significant positive correlation between PAR values and CHEMTAX derived chlorophyll a values of cyanobacteria and cryptophytes was observed. While there was no correlation between carbon biomass and Chl a concentrations (p > 0.05) for the whole dataset, a significant correlation appeared between these parameters when the data was split as high and low C:Chl a samples

    Virgin microplastics are not causing imminent harm to fish after dietary exposure

    Get PDF
    Among aquatic organisms, fish are particularly susceptible to ingesting microplastic particles due to their attractive coloration, buoyancy, and resemblance to food. However, in previous experimental setups, fish were usually exposed to unrealistically high concentrations of microplastics, or the microplastics were deliberately contaminated with persistent organic chemicals; also, in many experiments, the fish were exposed only during the larval stages. The present study investigated the effects of virgin microplastics in gilt-head seabream (Sparus aurata) after 45 days’ exposure at 0.1 g kg-1 bodyweight day-1 to 6 common types of microplastics. The overall growth, biochemical analyses of the blood, histopathology, and the potential of the microplastics to accumulate in gastrointestinal organs or translocate to the liver and muscles were monitored and recorded. The results revealed that ingestion of virgin microplastics does not cause imminent harm to the adult gilt-head seabream during 45 days of exposure and an additional 30 days of depuration. The retention of virgin microplastics in the gastrointestinal tract was fairly low, indicating effective elimination of microplastics from the body of the fish and no significant accumulation after successive meals. Therefore, both the short- and the long-term retention potential of microplastics in the gastrointestinal tract of fish is close to zero. However, some large particles remained trapped in the liver, and 5.3 % of all the livers analyzed contained at least one microplastic particle. In conclusion, the dietary exposure of S. aurata to 6 common types of virgin microplastics did not induce stress, alter the growth rate, cause pathology, or cause the microplastics to accumulate in the gastrointestinal tract of the fish

    Virgin microplastics are not causing imminent harm to fish after dietary exposure

    Get PDF
    Among aquatic organisms, fish are particularly susceptible to ingesting microplastic particles due to their attractive coloration, buoyancy, and resemblance to food. However, in previous experimental setups, fish were usually exposed to unrealistically high concentrations of microplastics, or the microplastics were deliberately contaminated with persistent organic chemicals; also, in many experiments, the fish were exposed only during the larval stages. The present study investigated the effects of virgin microplastics in gilt-head seabream (Sparus aurata) after 45 days’ exposure at 0.1 g kg-1 bodyweight day-1 to 6 common types of microplastics. The overall growth, biochemical analyses of the blood, histopathology, and the potential of the microplastics to accumulate in gastrointestinal organs or translocate to the liver and muscles were monitored and recorded. The results revealed that ingestion of virgin microplastics does not cause imminent harm to the adult gilt-head seabream during 45 days of exposure and an additional 30 days of depuration. The retention of virgin microplastics in the gastrointestinal tract was fairly low, indicating effective elimination of microplastics from the body of the fish and no significant accumulation after successive meals. Therefore, both the short- and the long-term retention potential of microplastics in the gastrointestinal tract of fish is close to zero. However, some large particles remained trapped in the liver, and 5.3 % of all the livers analyzed contained at least one microplastic particle. In conclusion, the dietary exposure of S. aurata to 6 common types of virgin microplastics did not induce stress, alter the growth rate, cause pathology, or cause the microplastics to accumulate in the gastrointestinal tract of the fish.This is a manuscript of an article published as Jovanović, Boris, Kerem Gökdağ, Olgaç Güven, Yilmaz Emre, Elizabeth M. Whitley, and Ahmet Erkan Kideys. "Virgin microplastics are not causing imminent harm to fish after dietary exposure." Marine pollution bulletin 130 (2018): 123-131. doi: 10.1016/j.marpolbul.2018.03.016. Posted with permission.</p

    Citizen science and environmental protection agencies : engaging citizens to address key environmental challenges

    Get PDF
    Environmental Protection Agencies (EPAs) have been involved in citizen science initiatives for decades, engaging with citizens with the goal of protecting and restoring our environment. Yet the data and knowledge generated and the possibilities for engaging citizens have grown significantly in the last decades thanks to the recent developments in mobile technologies and the access to internet, resulting in a transformation of how environmental protection can be done. This perspective provides some examples on how European EPAs and their partners are currently addressing key environmental challenges and exploring new institutional approaches by bringing in citizen science data and methods. It also points out challenges that need to be addressed to fully realize the potential of citizen science as a complement to the monitoring efforts by these agencies. Finally, it presents the Interest Group on Citizen Science of the Network of the Heads of Environmental Protection Agencies (EPA Network), an informal forum where EPAs across Europe share examples and bring together strategic insights on citizen science approaches into their daily activities

    CoCoNet: Towards coast to coast networks of marine protected areas (From the shore to the high and deep sea), coupled with sea-based wind energy potential

    No full text
    This volume contains the main results of the EC FP7 "The Ocean of Tomorrow" Project CoCoNet, divided in two sections: 1) a set of guidelines to design networks of Marine Protected Areas in the Mediterranean and the Black Seas; 2) a smart wind chart that will allow evaluating the possibility of installing Offshore Wind Farms in both seas. The concept of Cells of Ecosystem Functioning, based on connectivity, is introduced to define natural units of management and conservation. The definition of Good Environmental Status, as defined in the Marine Strategy Framework Directive, is fully embraced to set the objectives of the project, by adopting a holistic approach that integrates a full set of disciplines, ranging from physics to bio-ecology, economics, engineering and many sub-disciplines. The CoCoNet Consortium involved scientist sfrom 22 states, based in Africa, Asia, and Europe, contributing to build a coherent scientific community

    CoCoNet: Towards coast to coast networks of marine protected areas (From the shore to the high and deep sea), coupled with sea-based wind energy potential

    No full text
    This volume contains the main results of the EC FP7 "The Ocean of Tomorrow" Project CoCoNet, divided in two sections: 1) a set of guidelines to design networks of Marine Protected Areas in the Mediterranean and the Black Seas; 2) a smart wind chart that will allow evaluating the possibility of installing Offshore Wind Farms in both seas. The concept of Cells of Ecosystem Functioning, based on connectivity, is introduced to define natural units of management and conservation. The definition of Good Environmental Status, as defined in the Marine Strategy Framework Directive, is fully embraced to set the objectives of the project, by adopting a holistic approach that integrates a full set of disciplines, ranging from physics to bio-ecology, economics, engineering and many sub-disciplines. The CoCoNet Consortium involved scientist sfrom 22 states, based in Africa, Asia, and Europe, contributing to build a coherent scientific community

    CoCoNet: towards coast to coast networks of marine protected areas (from the shore to the high and deep sea), coupled with sea-based wind energy potential

    Get PDF
    This volume contains the main results of the EC FP7 “The Ocean of Tomorrow” Project CoCoNet, divided in two sections: 1) a set of guidelines to design networks of Marine Protected Areas in the Mediterranean and the Black Seas; 2) a smart wind chart that will allow evaluating the possibility of installing Offshore Wind Farms in both seas. The concept of Cells of Ecosystem Functioning, based on connectivity, is introduced to define natural units of management and conservation. The definition of Good Environmental Status, as defined in the Marine Strategy Framework Directive, is fully embraced to set the objectives of the project, by adopting a holistic approach that integrates a full set of disciplines, ranging from physics to bio-ecology, economics, engineering and many sub-disciplines. The CoCoNet Consortium involved scientist sfrom 22 states, based in Africa, Asia, and Europe, contributing to build a coherent scientific community
    corecore