16 research outputs found

    Elevated urinary CRELD2 is associated with endoplasmic reticulum stress-mediated kidney disease

    Get PDF
    ER stress has emerged as a signaling platform underlying the pathogenesis of various kidney diseases. Thus, there is an urgent need to develop ER stress biomarkers in the incipient stages of ER stress-mediated kidney disease, when a kidney biopsy is not yet clinically indicated, for early therapeutic intervention. Cysteine-rich with EGF-like domains 2 (CRELD2) is a newly identified protein that is induced and secreted under ER stress. For the first time to our knowledge, we demonstrate that CRELD2 can serve as a sensitive urinary biomarker for detecting ER stress in podocytes or renal tubular cells in murine models of podocyte ER stress-induced nephrotic syndrome and tunicamycin- or ischemia-reperfusion-induced acute kidney injury (AKI), respectively. Most importantly, urinary CRELD2 elevation occurs in patients with autosomal dominant tubulointerstitial kidney disease caused by UMOD mutations, a prototypical tubular ER stress disease. In addition, in pediatric patients undergoing cardiac surgery, detectable urine levels of CRELD2 within postoperative 6 hours strongly associate with severe AKI after surgery. In conclusion, our study has identified CRELD2 as a potentially novel urinary ER stress biomarker with potential utility in early diagnosis, risk stratification, treatment response monitoring, and directing of ER-targeted therapies in selected patient subgroups in the emerging era of precision nephrology

    Heterozygous Loss-of-Function SEC61A1 Mutations Cause Autosomal-Dominant Tubulo-Interstitial and Glomerulocystic Kidney Disease with Anemia

    Get PDF
    Autosomal-dominant tubulo-interstitial kidney disease (ADTKD) encompasses a group of disorders characterized by renal tubular and interstitial abnormalities, leading to slow progressive loss of kidney function requiring dialysis and kidney transplantation. Mutations in UMOD, MUC1, and REN are responsible for many, but not all, cases of ADTKD. We report on two families with ADTKD and congenital anemia accompanied by either intrauterine growth retardation or neutropenia. Ultrasound and kidney biopsy revealed small dysplastic kidneys with cysts and tubular atrophy with secondary glomerular sclerosis, respectively. Exclusion of known ADTKD genes coupled with linkage analysis, whole-exome sequencing, and targeted re-sequencing identified heterozygous missense variants in SEC61A1—c.553A>G (p.Thr185Ala) and c.200T>G (p.Val67Gly)—both affecting functionally important and conserved residues in SEC61. Both transiently expressed SEC6A1A variants are delocalized to the Golgi, a finding confirmed in a renal biopsy from an affected individual. Suppression or CRISPR-mediated deletions of sec61al2 in zebrafish embryos induced convolution defects of the pronephric tubules but not the pronephric ducts, consistent with the tubular atrophy observed in the affected individuals. Human mRNA encoding either of the two pathogenic alleles failed to rescue this phenotype as opposed to a complete rescue by human wild-type mRNA. Taken together, these findings provide a mechanism by which mutations in SEC61A1 lead to an autosomal-dominant syndromic form of progressive chronic kidney disease. We highlight protein translocation defects across the endoplasmic reticulum membrane, the principal role of the SEC61 complex, as a contributory pathogenic mechanism for ADTKD

    Noninvasive Immunohistochemical Diagnosis and Novel MUC1 Mutations Causing Autosomal Dominant Tubulointerstitial Kidney Disease

    No full text
    Background Autosomal dominant tubulointerstitial kidney disease caused by mucin-1 gene (MUC1) mutations (ADTKD-MUC1) is characterized by progressive kidney failure. Genetic evaluation for ADTKD-MUC1 specifically tests for a cytosine duplication that creates a unique frameshift protein (MUC1fs). Our goal was to develop immunohistochemical methods to detect the MUC1fs created by the cytosine duplication and, possibly, by other similar frameshift mutations and to identify novel MUC1 mutations in individuals with positive immunohistochemical staining for the MUC1fs protein. Methods We performed MUC1fs immunostaining on urinary cell smears and various tissues from ADTKD-MUC1-positive and -negative controls as well as in individuals from 37 ADTKD families that were negative for mutations in known ADTKD genes. We used novel analytic methods to identify MUC1 frameshift mutations. Results After technique refinement, the sensitivity and specificity for MUC1fs immunostaining of urinary cell smears were 94.2% and 88.6%, respectively. Further genetic testing on 17 families with positive MUC1fs immunostaining revealed six families with five novel MUC1 frameshift mutations that all predict production of the identical MUC1fs protein. Conclusions We developed a noninvasive immunohistochemical method to detect MUC1fs that, after further validation, may be useful in the future for diagnostic testing. Production of the MUC1fs protein may be central to the pathogenesis of ADTKD-MUC1

    Variable Clinical Presentation of an MUC1

    No full text
    BACKGROUND AND OBJECTIVES: The genetic cause of medullary cystic kidney disease type 1 was recently identified as a cytosine insertion in the variable number of tandem repeat region of MUC1 encoding mucoprotein-1 (MUC1), a protein that is present in skin, breast, and lung tissue, the gastrointestinal tract, and the distal tubules of the kidney. The purpose of this investigation was to analyze the clinical characteristics of families and individuals with this mutation. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Families with autosomal dominant interstitial kidney disease were referred for genetic analysis over a 14-year period. Families without UMOD or REN mutations prospectively underwent genotyping for the presence of the MUC1 mutation. Clinical characteristics were retrospectively evaluated in individuals with the MUC1 mutation and historically affected individuals (persons who were both related to genetically affected individuals in such a way that ensured that they could be genetically affected and had a history of CKD stage IV or kidney failure resulting in death, dialysis, or transplantation). RESULTS: Twenty-four families were identified with the MUC1 mutation. Of 186 family members undergoing MUC1 mutational analysis, the mutation was identified in 95 individuals, 91 individuals did not have the mutation, and111 individuals were identified as historically affected. Individuals with the MUC1 mutation suffered from chronic kidney failure with a widely variable age of onset of end stage kidney disease ranging from 16 to >80 years. Urinalyses revealed minimal protein and no blood. Ultrasounds of 35 individuals showed no medullary cysts. There were no clinical manifestations of the MUC1 mutation detected in the breasts, skin, respiratory system, or gastrointestinal tract. CONCLUSION: MUC1 mutation results in progressive chronic kidney failure with a bland urinary sediment. The age of onset of end stage kidney disease is highly variable, suggesting that gene–gene or gene–environment interactions contribute to phenotypic variability
    corecore