71 research outputs found

    Tumour suppressor ING1b maintains genomic stability upon replication stress

    Get PDF
    The lesion bypass pathway, which is regulated by monoubiquitination of proliferating cell nuclear antigen (PCNA), is essential for resolving replication stalling due to DNA lesions. This process is important for preventing genomic instability and cancer development. Previously, it was shown that cells deficient in tumour suppressor p33ING1 (ING1b) are hypersensitive to DNA damaging agents via unknown mechanism. In this study, we demonstrated a novel tumour suppressive function of ING1b in preserving genomic stability upon replication stress through regulating PCNA monoubiquitination. We found that ING1b knockdown cells are more sensitive to UV due to defects in recovering from UV-induced replication blockage, leading to enhanced genomic instability. We revealed that ING1b is required for the E3 ligase Rad18-mediated PCNA monoubiquitination in lesion bypass. Interestingly, ING1b-mediated PCNA monoubiquitination is associated with the regulation of histone H4 acetylation. Results indicate that chromatin remodelling contributes to the stabilization of stalled replication fork and to the regulation of PCNA monoubiquitination during lesion bypass

    PTEN status is a crucial determinant of the functional outcome of combined MEK and mTOR inhibition in cancer

    Get PDF
    Combined MAPK/PI3K pathway inhibition represents an attractive, albeit toxic, therapeutic strategy in oncology. Since PTEN lies at the intersection of these two pathways, we investigated whether PTEN status determines the functional response to combined pathway inhibition. PTEN (gene, mRNA, and protein) status was extensively characterized in a panel of cancer cell lines and combined MEK/mTOR inhibition displayed highly synergistic pharmacologic interactions almost exclusively in PTEN-loss models. Genetic manipulation of PTEN status confirmed a mechanistic role for PTEN in determining the functional outcome of combined pathway blockade. Proteomic analysis showed greater phosphoproteomic profile modification(s) in response to combined MEK/mTOR inhibition in PTEN- loss contexts and identified JAK1/STAT3 activation as a potential mediator of synergistic interactions. Overall, our results show that PTEN-loss is a crucial determinant of synergistic interactions between MAPK and PI3K pathway inhibitors, potentially exploitable for the selection of cancer patients at the highest chance of benefit from combined therapeutic strategies

    P53 in human melanoma fails to regulate target genes associated with apoptosis and the cell cycle and may contribute to proliferation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metastatic melanoma represents a major clinical problem. Its incidence continues to rise in western countries and there are currently no curative treatments. While mutation of the <it>P53 </it>tumour suppressor gene is a common feature of many types of cancer, mutational inactivation of <it>P53 </it>in melanoma is uncommon; however, its function often appears abnormal.</p> <p>Methods</p> <p>In this study whole genome bead arrays were used to examine the transcript expression of P53 target genes in extracts from 82 melanoma metastases and 6 melanoma cell lines, to provide a global assessment of aberrant P53 function. The expression of these genes was also examined in extracts derived from diploid human melanocytes and fibroblasts.</p> <p>Results</p> <p>The results indicated that P53 target transcripts involved in apoptosis were under-expressed in melanoma metastases and melanoma cell lines, while those involved in the cell cycle were over-expressed in melanoma cell lines. There was little difference in the transcript expression of P53 target genes between cell lines with null/mutant <it>P53 </it>compared to those with wild-type <it>P53</it>, suggesting that altered expression in melanoma was not related to <it>P53 </it>status. Similarly, down-regulation of P53 by short-hairpin RNA (shRNA) had limited effect on P53 target gene expression in melanoma cells, whereas there were a large number of P53 target genes whose mRNA expression was significantly altered by P53 inhibition in melanocytes. Analysis of whole genome gene expression profiles indicated that the ability of P53 to regulate genes involved in the cell cycle was significantly reduced in melanoma cells. Moreover, inhibition of P53 in melanocytes induced changes in gene expression profiles that were characteristic of melanoma cells and resulted in increased proliferation. Conversely, knockdown of P53 in melanoma cells resulted in decreased proliferation.</p> <p>Conclusions</p> <p>These results indicate that P53 target genes involved in apoptosis and cell cycle regulation are aberrantly expressed in melanoma and that this aberrant functional activity of P53 may contribute to the proliferation of melanoma.</p

    Polycomb group proteins: navigators of lineage pathways led astray in cancer

    Full text link

    PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis

    Get PDF
    Fibrosis due to extracellular matrix (ECM) secretion from myofibroblasts complicates many chronic liver diseases causing scarring and organ failure. Integrin-dependent interaction with scar ECM promotes pro-fibrotic features. However, the pathological intracellular mechanism in liver myofibroblasts is not completely understood, and further insight could enable therapeutic efforts to reverse fibrosis. Here, we show that integrin beta-1, capable of binding integrin alpha-11, regulates the pro-fibrotic phenotype of myofibroblasts. Integrin beta-1 expression is upregulated in pro-fibrotic myofibroblasts in vivo and is required in vitro for production of fibrotic ECM components, myofibroblast proliferation, migration and contraction. Serine/threonine-protein kinase proteins, also known as P21-activated kinase (PAK), and the mechanosensitive factor, Yes-associated protein 1 (YAP-1) are core mediators of pro-fibrotic integrin beta-1 signalling, with YAP-1 capable of perpetuating integrin beta-1 expression. Pharmacological inhibition of either pathway in vivo attenuates liver fibrosis. PAK protein inhibition, in particular, markedly inactivates the pro-fibrotic myofibroblast phenotype, limits scarring from different hepatic insults and represents a new tractable therapeutic target for treating liver fibrosis

    Human ex vivo prostate tissue model system identifies ING3 as an oncoprotein

    Get PDF
    Background: Although the founding members of the INhibitor of Growth (ING) family of histone mark readers, ING1 and ING2, were defined as tumour suppressors in animal models, the role of other ING proteins in cellular proliferation and cancer progression is unclear. Methods: We transduced ex vivo benign prostate hyperplasia tissues with inducible lentiviral particles to express ING proteins. Proliferation was assessed by H3S10phos immunohistochemistry (IHC). The expression of ING3 was assessed by IHC on a human prostate cancer tissue microarray (TMA). Gene expression was measured by DNA microarray and validated by real-time qPCR. Results: We found that ING3 stimulates cellular proliferation in ex vivo tissues, suggesting that ING3 could be oncogenic. Indeed, ING3 overexpression transformed normal human dermal fibroblasts. We observed elevated levels of ING3 in prostate cancer samples, which correlated with poorer patient survival. Consistent with an oncogenic role, gene-silencing experiments revealed that ING3 is required for the proliferation of breast, ovarian, and prostate cancer cells. Finally, ING3 controls the expression of an intricate network of cell cycle genes by associating with chromatin modifiers and the H3K4me3 mark at transcriptional start sites. Conclusions: Our investigations create a shift in the prevailing view that ING proteins are tumour suppressors and redefine ING3 as an oncoprotein

    Proteotoxic Stress as an Exploitable Vulnerability in Cells with Hyperactive AKT

    No full text
    Hyperactivity of serine-threonine kinase AKT is one of the most common molecular abnormalities in cancer, where it contributes to poor outcomes by facilitating the growth and survival of malignant cells. Despite its well-documented anti-apoptotic effects, hyperactivity of AKT is also known to be stressful to a cell. In an attempt to better elucidate this phenomenon, we observed the signs of proteotoxic stress in cells that harbor hyperactive AKT or have lost its principal negative regulator, PTEN. The activity of HSF1 was predictably elevated under these circumstances. However, such cells proved more sensitive to various regimens of heat shock, including the conditions that were well-tolerated by syngeneic cells without AKT hyperactivity. The sensitizing effect of hyperactive AKT was also seen in HSF1-deficient cells, suggesting that the phenomenon does not require the regulation of HSF1 by this kinase. Notably, the elevated activity of AKT was accompanied by increased levels of XBP1, a key component of cell defense against proteotoxic stress. Interestingly, the cells harboring hyperactive AKT were also more dependent on XBP1 for their growth. Our observations suggest that proteotoxic stress conferred by hyperactive AKT represents a targetable vulnerability, which can be exploited by either elevating the stress above the level tolerated by such cells or by eliminating the factors that enable such tolerance
    corecore