906 research outputs found

    Optimal Solution of Off-line and On-line Generalized Caching

    Get PDF
    Network traffic can be reduced significantly if caching is utilized effectively. As an effort in this direction we study the replacement problem that arises in caching of multimedia objects. The size of objects and the cost of cache misses are assumed non-uniform. The non-uniformity of size is inherent in multimedia objects, and the non-uniformity of cost is due to the non-uniformity of size and the fact that the objects are scattered throughout the network. Although a special case of this problem, i.e. the case of uniform size and cost, has been extensively studied, the general case needs a great deal of study. We present a dynamic programming method of optimally solving the off-line and on-line versions of this problem, and discuss the complexity of this method

    Simple and Efficient Numerical Evaluation of Near-Hypersingular Integrals

    Get PDF
    Recently, significant progress has been made in the handling of singular and nearly-singular potential integrals that commonly arise in the Boundary Element Method (BEM). To facilitate object-oriented programming and handling of higher order basis functions, cancellation techniques are favored over techniques involving singularity subtraction. However, gradients of the Newton-type potentials, which produce hypersingular kernels, are also frequently required in BEM formulations. As is the case with the potentials, treatment of the near-hypersingular integrals has proven more challenging than treating the limiting case in which the observation point approaches the surface. Historically, numerical evaluation of these near-hypersingularities has often involved a two-step procedure: a singularity subtraction to reduce the order of the singularity, followed by a boundary contour integral evaluation of the extracted part. Since this evaluation necessarily links basis function, Green s function, and the integration domain (element shape), the approach ill fits object-oriented programming concepts. Thus, there is a need for cancellation-type techniques for efficient numerical evaluation of the gradient of the potential. Progress in the development of efficient cancellation-type procedures for the gradient potentials was recently presented. To the extent possible, a change of variables is chosen such that the Jacobian of the transformation cancels the singularity. However, since the gradient kernel involves singularities of different orders, we also require that the transformation leaves remaining terms that are analytic. The terms "normal" and "tangential" are used herein with reference to the source element. Also, since computational formulations often involve the numerical evaluation of both potentials and their gradients, it is highly desirable that a single integration procedure efficiently handles both

    Issues and Methods Concerning the Evaluation of Hypersingular and Near-Hypersingular Integrals in BEM Formulations

    Get PDF
    It is known that higher order modeling of the sources and the geometry in Boundary Element Modeling (BEM) formulations is essential to highly efficient computational electromagnetics. However, in order to achieve the benefits of hIgher order basis and geometry modeling, the singular and near-singular terms arising in BEM formulations must be integrated accurately. In particular, the accurate integration of near-singular terms, which occur when observation points are near but not on source regions of the scattering object, has been considered one of the remaining limitations on the computational efficiency of integral equation methods. The method of singularity subtraction has been used extensively for the evaluation of singular and near-singular terms. Piecewise integration of the source terms in this manner, while manageable for bases of constant and linear orders, becomes unwieldy and prone to error for bases of higher order. Furthermore, we find that the singularity subtraction method is not conducive to object-oriented programming practices, particularly in the context of multiple operators. To extend the capabilities, accuracy, and maintainability of general-purpose codes, the subtraction method is being replaced in favor of the purely numerical quadrature schemes. These schemes employ singularity cancellation methods in which a change of variables is chosen such that the Jacobian of the transformation cancels the singularity. An example of the sin,oularity cancellation approach is the Duffy method, which has two major drawbacks: 1) In the resulting integrand, it produces an angular variation about the singular point that becomes nearly-singular for observation points close to an edge of the parent element, and 2) it appears not to work well when applied to nearly-singular integrals. Recently, the authors have introduced the transformation u(x(prime))= sinh (exp -1) x(prime)/Square root of ((y prime (exp 2))+ z(exp 2) for integrating functions of the form I = Integral of (lambda(r(prime))((e(exp -jkR))/(4 pi R) d D where A (r (prime)) is a vector or scalar basis function and R = Square root of( (x(prime)(exp2) + (y(prime)(exp2) + z(exp 2)) is the distance between source and observation points. This scheme has all of the advantages of the Duffy method while avoiding the disadvantages listed above. In this presentation we will survey similar approaches for handling singular and near-singular terms for kernels with 1/R(exp 2) type behavior, addressing potential pitfalls and offering techniques to efficiently handle special cases

    Refinement of Methods for Evaluation of Near-Hypersingular Integrals in BEM Formulations

    Get PDF
    In this paper, we present advances in singularity cancellation techniques applied to integrals in BEM formulations that are nearly hypersingular. Significant advances have been made recently in singularity cancellation techniques applied to 1 R type kernels [M. Khayat, D. Wilton, IEEE Trans. Antennas and Prop., 53, pp. 3180-3190, 2005], as well as to the gradients of these kernels [P. Fink, D. Wilton, and M. Khayat, Proc. ICEAA, pp. 861-864, Torino, Italy, 2005] on curved subdomains. In these approaches, the source triangle is divided into three tangent subtriangles with a common vertex at the normal projection of the observation point onto the source element or the extended surface containing it. The geometry of a typical tangent subtriangle and its local rectangular coordinate system with origin at the projected observation point is shown in Fig. 1. Whereas singularity cancellation techniques for 1 R type kernels are now nearing maturity, the efficient handling of near-hypersingular kernels still needs attention. For example, in the gradient reference above, techniques are presented for computing the normal component of the gradient relative to the plane containing the tangent subtriangle. These techniques, summarized in the transformations in Table 1, are applied at the sub-triangle level and correspond particularly to the case in which the normal projection of the observation point lies within the boundary of the source element. They are found to be highly efficient as z approaches zero. Here, we extend the approach to cover two instances not previously addressed. First, we consider the case in which the normal projection of the observation point lies external to the source element. For such cases, we find that simple modifications to the transformations of Table 1 permit significant savings in computational cost. Second, we present techniques that permit accurate computation of the tangential components of the gradient; i.e., tangent to the plane containing the source element

    Rheological Characterization of Ultra-High Performance Concrete for 3d Printing

    Get PDF
    The authors recently developed a 3D-printable ultra-high performance fiber-reinforced concrete (3DP-UHPFRC) for additive construction of structural members with significantly reduced reliance on steel bars. This study investigates the rheological behavior of the developed 3DP-UHPFRC. The effects of two major factors affecting the performance of 3DP-UHPFRC, namely steel fiber volume (0, 1%, and 2%) and nano-clay (NC) content (0, 0.1%, and 0.2% by binder mass) on workability, static yield stress, dynamic yield stress, and apparent viscosity were determined. Test results showed that the inclusion of steel fibers and NC reduced the workability and led to a significant increase in the static yield stress, dynamic yield stress, and apparent viscosity. However, the effect of NC content on the rheological properties became negligible in the mixtures made with 2% fiber content. Similarly, the effect of steel fiber volume became negligible in the mixtures made with 0.2% NC. In addition, the influence of changes in rheology due to the addition of steel fiber and NC on the extrudability and buildability of the mixtures were investigated by 3D-printing of 500 mm high hollow columns with three different print speeds. The results showed all mixtures exhibited satisfactory extrudability (i.e., no blockage of extruder or tearing of filaments was observed). In addition, the buildability of the mixtures increased as the steel fiber and NC contents increased

    Complications of Bone Plating Following Different Facial Bones Fractures

    Get PDF
    The Aim of our study was to evaluate the complication of bone plating fixation used for treatment of multiple type of facial fracture, reconstruction procedure and bone graft in maxillofacial trauma. This prospective study was performed on 42 patients to evaluates complications of the bone plates had been used in fixation of multiple facial fractures, between October 2013 and March 2015, The age of the patients ranged from 17 – 65 years The mean age of the patients was (31.7± 9.4) years. There were 31 males and 11 females, with male to female ratio (2.81:1), patients were followed up for minimum 6 months. Seventy-one plates were inserted over 17 months. Among the 42 patients there were 45 fracture sites, 26 (57.8%) were mandibular fractures, 15 (33.3%) were ZMC fractures, and four (8.9%) were maxillary; it is worth mentioning that some patients had fracture at more than one site. Complications due to fracture fixation with bone plating were 33 represented 46.5% of the total 71 plates inserted, which included Infection/wound dehiscence 15 (21.1%), Discomfort/ palpability 9 (12.7%), Plate exposure 4 (5.6%), hardware failure (broken plate & loosening screw) 1 (1.4%), Cold/heat intolerance 3 (4.2%) and Pain (TMJ) account for one plate (1.4%). According to this study, there will be a need for hardware removal in a portion of patients treated with metallic osteosynthesis devices. This study states that the infection is most common reason for plate removal, followed by discomfort due to cold/heat climate, particularly in those facial regions that provide only thin soft tissue cover over the plate

    Short-time dynamics of a packing of polyhedral grains under horizontal vibrations

    Full text link
    We analyze the dynamics of a 3D granular packing composed of particles of irregular polyhedral shape confined inside a rectangular box with a retaining wall sub jected to horizontal harmonic forcing. The simulations are performed by means of the contact dynamics method for a broad set of loading parameters. We explore the vibrational dynamics of the packing, the evolution of solid fraction and the scaling of dy- namics with the loading parameters. We show that the motion of the retaining wall is strongly anharmonic as a result of jamming and grain rearrangements. It is found that the mean particle displacement scales with inverse square of frequency, the inverse of the force amplitude and the square of gravity. The short- time compaction rate grows in proportion to frequency up to a characteristic frequency, corresponding to collective particle rearrangements between equilibrium states, and then it declines in inverse proportion to frequency

    Pathophysiologic Changes in Extracellular pH Modulate Parathyroid Calcium-Sensing Receptor Activity and Secretion via a Histidine-Independent Mechanism

    Get PDF
    The calcium-sensing receptor (CaR) modulates renal calcium reabsorption and parathyroid hormone (PTH) secretion and is involved in the etiology of secondary hyperparathyroidism in CKD. Supraphysiologic changes in extracellular pH (pH(o)) modulate CaR responsiveness in HEK-293 (CaR-HEK) cells. Therefore, because acidosis and alkalosis are associated with altered PTH secretion in vivo, we examined whether pathophysiologic changes in pH(o) can significantly alter CaR responsiveness in both heterologous and endogenous expression systems and whether this affects PTH secretion. In both CaR-HEK and isolated bovine parathyroid cells, decreasing pH(o) from 7.4 to 7.2 rapidly inhibited CaR-induced intracellular calcium (Ca(2+)(i)) mobilization, whereas raising pH(o) to 7.6 potentiated responsiveness to extracellular calcium (Ca(2+)(o)). Similar pH(o) effects were observed for Ca(2+)(o)-induced extracellular signal-regulated kinase phosphorylation and actin polymerization and for L-Phe-induced Ca(2+)(i) mobilization. Intracellular pH was unaffected by acute 0.4-unit pH(o) changes, and the presence of physiologic albumin concentrations failed to attenuate the pH(o)-mediated effects. None of the individual point mutations created at histidine or cysteine residues in the extracellular domain of CaR attenuated pH(o) sensitivity. Finally, pathophysiologic pH(o) elevation reversibly suppressed PTH secretion from perifused human parathyroid cells, and acidosis transiently increased PTH secretion. Therefore, pathophysiologic pH(o) changes can modulate CaR responsiveness in HEK-293 and parathyroid cells independently of extracellular histidine residues. Specifically, pathophysiologic acidification inhibits CaR activity, thus permitting PTH secretion, whereas alkalinization potentiates CaR activity to suppress PTH secretion. These findings suggest that acid-base disturbances may affect the CaR-mediated control of parathyroid function and calcium metabolism in vivo

    Older adults experiences of rehabilitation in acute health care

    Get PDF
    Rehabilitation is a key component of nursing and allied healthcare professionals’ roles in most health and social care settings. This paper reports on stage 2 of an action research project to ascertain older adult's experience of rehabilitation. Twenty postdischarge interviews were conducted and the interview transcripts were analysed using thematic content analysis. All older adults discharged from an acute older acute rehabilitation ward to their own homes in the community were eligible to participate. The only exclusion criterion was older adults who were thought to be unable to give consent to participate by the nurse in charge and the researcher. Whilst 92 older adults were eligible to participate in this research study, only 20 were interviewed. The findings from this study suggest that older adults valued communication with health professionals but were aware of their time constraints that hindered communication. This study suggests that both nurses and allied health professionals are not actively providing rehabilitative services to promote health and well-being, which contradicts the focus of active ageing. Furthermore, there was evidence of unmet needs on discharge, and older adults unable to recall the professions that were involved in their interventions and the rationale for therapy input. It is suggested that further research is needed to explore the effectiveness of allied health rehabilitation in the acute setting. This study highlights the need for further research into older adults’ perceptions of the rehabilitation process in the acute setting
    • …
    corecore