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ABSTRACT 

The calcium-sensing receptor (CaR) modulates renal calcium reabsorption and parathyroid 

hormone (PTH) secretion and is involved in the aetiology of secondary hyperparathyroidism in 

CKD. Supraphysiological extracellular pH (pHo) changes modulate CaR responsiveness in HEK-293 

(CaR-HEK) cells. Therefore, since acidosis and alkalosis are associated with altered PTH secretion 

in vivo, we examined whether pathophysiological changes in pHo can alter CaR responsiveness 

significantly in both heterologous and endogenous expression systems and whether this affects PTH 

secretion. 

    In both CaR-HEK and isolated bovine parathyroid cells, decreasing pHo from 7.4 to 7.2 rapidly 

inhibited CaR-induced intracellular calcium (Ca2+
i) mobilization while raising pHo to 7.6 

potentiated extracellular calcium (Ca2+
o) responsiveness. Similar pHo effects were observed for 

Ca2+
o-induced extracellular signal-regulated kinase phosphorylation and actin polymerization and 

for L-Phe induced Ca2+
i mobilization. Intracellular pH was unaffected by acute 0.4 unit pHo changes 

while the presence of physiological albumin concentrations failed to attenuate the pHo effects. CaR 
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pHo-sensitivity does not result from extracellular histidine or free cysteine ionization since point 

mutations of none of 17 such residues attenuated pHo sensitivity. Finally, pathophysiological pHo 

elevation reversibly suppressed PTH secretion from perifused human parathyroid cells, and 

acidosis transiently increased PTH secretion.   

    Therefore, pathophysiological pHo changes can modulate CaR responsiveness in HEK-293 and 

parathyroid cells, independently of extracellular histidine residues. Specifically, pathophysiological 

acidification inhibits CaR activity thus permitting PTH secretion, whereas alkalinization potentiates 

CaR activity to suppress PTH secretion. These findings suggest that acid-base disturbances may 

affect the CaR-mediated control of parathyroid function and calcium metabolism in vivo.   

Word Count – Abstract: 247 

Word Count – Manuscript: 2996 

 

Mammalian calcium homeostasis is maintained by the regulated secretion of parathyroid hormone (PTH) 

and renal calcium reabsorption under the control of the calcium-sensing receptor (CaR) (1,2). 

Hypercalcaemia stimulates the CaR to suppress PTH secretion while chronic underactivation of CaR can 

contribute to pathologically elevated PTH secretion such as in secondary hyperparathyroidism of chronic 

kidney disease (CKD). In a heterologous human embryonic kidney (HEK)-293 cell-based expression 

system, Quinn et al (3) found that the Ca2+
o potency of the human CaR is sensitive to supraphysiological 

changes in extracellular pH (pHo). By varying the pH of the experimental buffer in 0.5 unit steps from 5.5 

to 9, the sensitivity of CaR to Ca2+
o (and Mg2+

o) was altered with external acidification decreasing CaR 

sensitivity and alkalinisation increasing CaR sensitivity (3). However, blood pH levels (7.35-7.45 ≈ 40nM 

H+ concentration) rarely vary beyond ± 0.4 pH units in vivo even under extreme pathological conditions, 

with even smaller changes (± 0.2) more generally seen, such as with the acidosis of CKD however even 

this still represents a ~58% increase in H+ concentration. Secondary hyperparathyroidism is another 

complication of CKD and interestingly in animal experiments, induction of metabolic acidosis results in 

increased serum PTH levels and hypercalcaemia, whereas induction of alkalosis suppresses serum PTH 

levels (4-8).  
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Therefore, since acidosis has been associated with increased serum PTH levels in vivo, we examined 

whether much smaller, pathophysiologically relevant changes in pHo (± 0.2) can alter the Ca2+
o sensitivity 

of CaR-mediated signaling pathways in HEK-293 cells and whether such effects can be replicated in 

parathyroid cells. We also examined whether a specific histidine or free cysteine residue could account for 

CaR pHo-sensitivity and finally considered the effect of such pathophysiological changes in pHo on PTH 

secretion.  

 

RESULTS 

Fura 2-loaded CaR-HEK cells were stimulated with 2.5mM Ca2+
o (pH 7.4) to elicit CaR-induced Ca2+

i 

mobilisation and then switched to the same buffer at either pH 7.2 or 7.6 before being returned to pH 7.4. 

At pH 7.6, CaR responsiveness (i.e. 350/380 fura ratio area under the curve) was significantly increased 

(Fig.1A), an effect that was immediately reversible upon return to pH 7.4. In contrast, lowering pHo to 7.2 

significantly inhibited CaR responsiveness (Fig.1B), the effect being immediately reversible. The effect of 

± 0.2 pH unit changes on Ca2+
i mobilization was then tested over a range of Ca2+

o concentrations from 0.5-

10 mM. Again, CaR responsiveness was significantly inhibited in pH 7.2 (EC50 for Ca2+
o, 3.6 ± 0.2 mM in 

7.2 vs. 3.1 ± 0.1 in 7.4, P<0.05) and significantly stimulated in pH 7.6 (2.8 ± 0.0 mM in 7.6, P<0.05). In 

addition, similar effects of changing pHo (± 0.2 units) were also seen using bicarbonate/CO2 buffers 

(Fig.1D).  

 

To determine whether this apparent pHo-sensitivity of CaR is specific to intracellular Ca2+
i mobilisation or 

applies to other effector pathways, two other readouts of CaR activity were used; namely extracellular 

signal-regulated kinase (ERK) phosphorylation  and actin polymerization (9, 10). Indeed, mild acidosis 

(pHo 7.2) significantly inhibited Ca2+
o-induced ERK phosphorylation in CaR-HEK cells (Fig.2A; 3.5 mM 

Ca2+
o), while mild alkalosis (pHo 7.6) increased ERK activation. Similarly a 0.2 unit reduction in pHo 

inhibited 1.5 mM Ca2+
o-induced actin polymerisation while a 0.2 unit increase in pHo potentiated 1.8 mM 

Ca2+
o-induced actin polymerisation (Fig.2B). Together these results suggest that the effect of altering pHo 

affects the Ca2+
o sensitivity of the CaR rather than the mechanism of Ca2+

i mobilization. Indeed, in the 
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presence of 0.5 mM Ca2+
o (which renders the CaR inactive) variations in pHo between 7.2 and 7.6 had no 

effect on actin polymerisation indicating that changing pHo does not otherwise affect baseline signalling. 

Next, we examined the effect of 0.2 unit pHo changes on the response to the CaR positive allosteric 

modulator L-Phe (10 mM) to determine whether the pHo sensitivity is exclusive to orthosteric agonism 

with Ca2+
o. We observed significant potentiation of L-Phe-induced Ca2+

i mobilization in pHo 7.6 and 

attenuation in pHo 7.2 (Fig.2C) similar to that observed for Ca2+
o.  

 

Next, we examined whether pathophysiological changes in pHo also affect CaR-induced Ca2+
i mobilisation 

in parathyroid cells, in which the CaR is expressed endogenously. Indeed, raising pHo to 7.6 while 

stimulating CaR-induced Ca2+
i mobilization in bovine parathyroid cells (2.5mM Ca2+

o) significantly 

potentiated the response, an effect that was fully and immediately reversible upon return to pHo 7.4 

(Fig.3A). In addition, lowering pHo to 7.2 promptly inhibited the Ca2+
i mobilization elicited in parathyroid 

cells in response to 2.5mM Ca2+
o (Fig.3B). 

 

In considering the potential (patho)physiological relevance of CaR pHo-sensitivity, it should be noted that 

serum albumin can bind calcium in a pH-dependent manner. Thus, albumin releases calcium under acidic 

conditions, which might tend to counteract the concomitant CaR inhibition, whereas alkaline conditions 

promote calcium binding to albumin and thus potentially counteract the CaR stimulation. In consequence, 

we tested the effects of pHo on CaR-induced Ca2+
i mobilisation in the presence of a physiological 

concentration of albumin (5% w/v). Exposure of CaR-HEK cells to 3 mM Ca2+
o (in 5% (w/v) albumin) at 

pH 7.4 resulted in an increase in Ca2+
i concentration, and as before, lowering pHo to 7.2 resulted in a 

reversible attenuation of the CaR response (Fig.4Ai). In addition, increasing pHo to 7.6 while stimulating 

CaR with 3 mM Ca2+
o (in 5% albumin) resulted in potentiation of the response (Fig.4Aii). This was further 

tested in bovine parathyroid cells and again raising pHo to 7.6 potentiated CaR activity despite the 

presence of 5% (w/v) albumin (Fig.4B). 

 

To test whether the changes in pHo might instead be acting by altering intracellular pH (pHi), CaR-HEK 

and bovine parathyroid cells were loaded with the pH-sensitive dye BCECF and exposed to CaR 
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stimulation in the presence or absence of even greater changes in pHo, namely pH 7.0 for acidosis and pH 

7.8 for alkalosis. However, in neither cell type did either pHo 7 or 7.8 (or indeed CaR activation itself) 

affect pHi over the timescales employed (Fig.5). Therefore, these data suggest that the consequence of 

altering pHo on intracellular signalling is via an effect on the CaR per se. Ammonium chloride and sodium 

acetate were used as positive controls to demonstrate that pHi changes could be detected in the BCECF-

loaded cells. Indeed, ammonium chloride elicited intracellular alkalinisation in both cell-types, whereas 

sodium acetate induced a marked intracellular acidification in CaR-HEK cells and had a much smaller 

effect in bovine parathyroid cells. 

  

Effect of altered pHo on parathyroid hormone secretion 

Next, parathyroid hormone secretion was measured in human parathyroid cells where it was shown that in 

the presence of physiological free Ca2+
o concentration (1.2 mM), lowering pHo (7.2 then 7.0) caused an 

initial increase in PTH secretion whereas raising pH (7.6 then 7.8) suppressed PTH secretion (Fig.6). 

When pHo was lowered to normal (7.4), PTH secretion then rose again suggesting that the suppression 

was fully reversible. Preliminary experiments investigating the effect of 0.4 unit pHo changes on PTH 

secretion from both bovine and human parathyroid cells (and conducted prior to those shown in Fig.6) 

showed a similar pHo sensitivity, with alkalosis suppressing PTH secretion significantly in both cases (not 

shown).  

 

Investigation of extracellular histidine / cysteine residues as possible sites of CaR pHo sensitivity 

Finally, modelling the homodimeric CaR extracellular domain using sequence alignment with the 

metabotropic glutamate receptor (mGlu) structure 2e4u (11,12) revealed the proximity of certain 

extracellular histidine sites (in black) to clusters of aspartate and glutamate residues (in grey) previously 

proposed to be sites of Ca2+
o binding (13,14) (Fig.7A). The amino acids whose sidechain pK values are 

closest to the physiological pHo and thus that might account for pHo-sensitivity in CaR, are histidine 

(~6.5) and free cysteine (~8.5). Indeed the human CaR contains 16 extracellular histidines plus 1 free 

cysteine residue (Cys-482). Therefore, each of these residues was mutated individually, histidines to 

valines and the cysteine to serine, with the resulting 17 CaR mutants expressed transiently in HEK-293 
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cells. The effects of ± 0.2 pHo unit changes on CaR-induced Ca2+
i mobilization were then tested in the 

mutant CaR-expressing cells and compared to their effects on wild-type CaR-expressing cells. For this, 

concentration-effect curves for Ca2+
o-induced Ca2+

i mobilization were generated to determine whether the 

mutations elicit substantial changes in Ca2+
o potency / CaR responsiveness per se. All but two of the 

mutants exhibited significant, sigmodial Ca2+
o sensitivity (at concentrations <10mM), the exceptions being 

CaRH41V and CaRH595V (Table 1).  

 

For the 15 CaR mutants that exhibited robust Ca2+
o sensitivity, the effect of ± 0.2 pHo unit changes on 

CaR-induced Ca2+
i mobilization was then tested following exposure to 3.5 mM Ca2+

o. There were no 

significant reductions in either acidosis-elicited attenuation or alkalosis-mediated potentiation of CaR 

activity in any of the CaR mutants (relative to wild-type CaR) suggesting that none of them contribute to 

pHo sensitivity in CaR (Table 1). Having failed to identify a sole histidine residue as being responsible for 

eliciting CaR pHo sensitivity, the two histidine mutants that produced the largest trend reductions in pHo 

sensitivity, namely CaRH429V and CaRH495V, were then co-mutated to determine whether together they 

might inhibit CaR pHo sensitivity. However, the pHo sensitivity of CaRH429V/H495V was not significantly 

different from wild-type CaR. 

 

For the two remaining mutants that exhibited reduced Ca2+
o sensitivity (and lower protein abundance of 

the mature 160kDa CaR protein), more robust stimulation was required, namely 5 mM Ca2+
o plus 1 M 

R467 (positive allosteric modulator) for CaRH595V and 30 mM Ca2+
o plus 1 M R467 for CaRH41V (Fig.7B, 

Table 1). Since these treatments represent supramaximal stimuli for wild-type CaR, and thus are 

unsuitable for testing the effects of altering pHo on the wild-type receptor, the resulting data for CaRH41V 

and CaRH595V cannot be compared directly to wild-type CaR but are appropriate for qualitative comparison 

by examining their signalling before and after the change in pHo. In the case of both mutations, lowering 

pHo significantly inhibited the CaR response while raising pHo significantly increased activity in the 

mutant CaRs as before. Therefore taken together, there was no evidence that any of the 17 histidine 

residues or single free cysteine (Cys-482) contributed to the pHo sensitivity of CaR.  
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DISCUSSION 

Ca2+
o potency for CaR is known to be sensitive to large changes in ambient pHo (3,15). The pH of human 

plasma is maintained between 7.35 and 7.45 representing a 12.5% deviation above and below the normal 

H+ concentration of 4x10-8 M (i.e., pH 7.40). Indeed, a 1-unit pH change would represent a lethal ten-fold 

change in H+ concentration (16), and even a smaller drop to 7.1 and below represents a medical 

emergency. This led us to investigate whether the CaR can also respond to smaller, pathophysiologically 

relevant changes in pHo. Since metabolic acidosis and secondary hyperparathyroidism are both common 

consequences of CKD, the current data may even provide a mechanistic link between the two. 

 

Here we have demonstrated that pathophysiologically-relevant (0.2 unit) changes in pHo modulate 

significantly Ca2+
o-induced Ca2+

i mobilization in CaR-HEK cells and elicit similar effects on two other 

readouts of CaR-mediated signalling, namely ERK phosphorylation and actin polymerisation. Thus, the 

effect of the pHo change is not signalling pathway-specific and thus likely occurs at the level of the CaR. 

Indeed, no acute changes in pHi were detected in either CaR-HEK or bovine parathyroid cells following 

exposure to larger (0.4 unit) changes in pHo over the timescale tested, supporting the idea that the change 

in pHo elicits an extracellular, as opposed to non-specific intracellular, effect on CaR activity. Quinn et al 

(3) reported slow cytoplasmic acidification / alkalinisation in CaR-HEKs in response to much larger 1-2 

pHo unit decreases / increases respectively, however the slow rate of change failed to account for the 

much more rapid pHo-mediated change in CaR sensitivity.  

 

Regarding the CaR agonist selectivity of the pHo effect, Quinn et al (3) found that Mg2+
o was similarly 

affected by pHo as for Ca2+
o, both of these cations being orthosteric CaR agonists. Here we found that L-

Phe-induced Ca2+
i mobilization was also sensitive to pathophysiological changes in pHo suggesting that 

allosteric CaR modulation is similarly sensitive to pHo and thus unlikely to counteract the effect in vivo. 

 

Importantly, the enhancement of CaR signalling in pHo 7.6 and inhibition in pHo 7.2 was also observed in 

bovine parathyroid cells, in which the CaR is expressed endogenously. Consistent with this observation 
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was the clear suppression of PTH secretion from bovine and human parathyroid cells following perifusion 

in alkaline buffer (pHo 7.8; preliminary experiments not shown). Repeating these experiments using 0.2 

unit pHo changes, we observed a transient rise in PTH secretion from human parathyroid cells which was 

not sustained when pHo was lowered to 7.2, and, more sustained suppression of PTH secretion when pHo 

was increased to 7.6. These in vitro data are consistent with observations that metabolic acidosis is 

associated with increased serum PTH and calcium levels and that alkalosis suppresses serum PTH in vivo 

(4,6-8). The current findings suggest a CaR-based mechanism for these previous data from animal studies. 

It will be interesting therefore to determine therefore whether acidosis and/or alkalosis elicit chronic 

changes in PTH secretion in vivo. Interestingly, at age 80, human blood H+ concentration is 6-7% higher 

than at age 20 (17) and there is a concomitant rise in serum PTH levels (18). With regards to metabolic 

acidosis and secondary hyperparathyroidism in CKD, while secondary hyperparathyroidism is known to 

be due partly to hyperphosphatemia and partly to decreased calcitriol levels (resulting in part to lowered 

plasma free calcium concentration), it is interesting to speculate that acidosis may also contribute to 

elevated PTH secretion rates by suppressing CaR-sensitivity as observed here. In addition, the current data 

suggest that raising pHo promotes CaR-mediated suppression of PTH secretion and thus may provide the 

basis of a useful adjuvant therapy for secondary hyperparathyroidism in chronic kidney disease. Indeed 

clinically, low bicarbonate concentration in pre-dialysis patients predicts subsequent coronary artery 

calcification (19). Since oral sodium bicarbonate supplementation slows the rate of decline of renal 

function in CKD patients with low plasma bicarbonate concentrations (20) the effect of this co-therapy on 

the development of secondary hyperparathyroidism and vascular calcification might be considered for 

investigation. Interestingly, acidosis also increases fibroblast growth factor (FGF)23 expression in 

osteoblasts raising the question of whether treating acidosis in CKD may lower FGF23 (21) and indeed 

PTH secretion.   

 

Low pH displaces bound calcium from serum albumin and could compensate for the acid-mediated 

decline in CaR responsiveness by increasing the free calcium concentration (22). However, in the current 

study, inclusion of 5% (w/v) albumin in the physiological saline solution, i.e., at a physiologically relevant 

concentration, had little or no effect on the pHo-sensitivity of the CaR. Indeed, albumin was present in 
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both sets of experiments measuring human and bovine PTH secretion and this did not prevent detection of 

an alkalosis-induced suppression of PTH secretion. Thus, over the pathophysiological pHo range, the 

effect of changing pHo on CaR activity appears greater than any potential effect on calcium-buffering / 

displacement. Indeed, one study found that between pH 6.8 and 7.4, the calcium-binding affinity of 

albumin is not altered significantly whereas at pH 8, there is a four-fold increase in the association 

constant (23). 

 

Extracellular histidine residues have been shown to account for proton sensitivity in a number of 

membrane proteins including the anion exchange protein 2 (24), ovarian cancer G protein-coupled 

receptor-1 (25) and purinergic P2X4 receptor (26,27). Despite this, we found no evidence that any of the 

16 extracellular histidine residues or the one free-cysteine residue (Cys-482) are individually responsible 

for CaR pHo sensitivity, at least over the pathophysiological pHo range tested. Amongst members of the 

homologous family C GPCRs, mGluR4 is also inhibited by acidity and activated by alkalinity whereas 

mGluRs 1, 5 and 8 are pHo-insensitive (28). However, no histamines are shared exclusively between CaR 

and mGluR4. Therefore we conclude, by exclusion, that the most likely molecular mediators of CaR pHo 

sensitivity are extracellular clusters of aspartate and glutamate residues (3). That is, despite the low pKa 

values of Glu and Asp side-chains in their free amino acid forms (around 4), when clustered, their pKa 

values may lie closer to the physiological pH range (~7) (29,30). Finally, while we cannot rule out the 

possible contribution of other pHo-sensitive membrane proteins to these data, it should be noted that the 

pHo changes were without effect in cells either lacking the CaR (not shown), or, incubated in low Ca2+
o 

concentration (Fig.2Bii).  

 

In conclusion, the human CaR exhibits pHo sensitivity over the pathophysiological range of pHo witnessed 

in vivo. This pHo sensitivity of the CaR exerts functionally significant effects on PTH secretion and thus 

might have wider relevance for whole body calcium homeostasis and indeed for the secondary 

hyperparathyroidism of CKD. 
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CONCISE METHODS   

Cell Culture and Calcium-Sensing Receptor functional assays 

HEK-293 cells, stably transfected with human parathyroid CaR, were cultured in Dulbecco’s Modified 

Eagle's medium (supplemented with 10% v/v fetal bovine serum), loaded with  Fura-2/AM and assayed 

for Ca2+
i by dual-excitation wavelength microfluorometry in Experimental Buffer [20mM HEPES, pH 7.4, 

125mM NaCl, 4mM KCl, 1.2mM CaCl2, 0.5mM MgCl2, 5.5mM glucose] as described previously (10). 

Intracellular pH was quantified similarly using the pH-sensitive fluorescent dye BCECF. CaR-induced 

ERK phosphorylation was detected by semi-quantitative immunoblotting using a phospho-specific 

polyclonal antibody (9) against the lysates of cells solubilised in RIPA buffer supplemented with protease 

and phosphatase inhibitors. To assess actin stress fiber assembly, paraformaldehyde-fixed cells were 

stained with Phalloidin-TRITC and imaged by fluorescence microscopy (10).  

Site-directed mutagenesis – CaR mutations were introduced into the human CaR by QuikChange 

(Stratagene) site-directed mutagenesis then transiently transfected into HEK-293 cells using FuGENE-6. 

Parathyroid gland preparation and PTH secretion assay - Bovine parathyroid cells (abattoir-sourced) 

were obtained by collagenase-digestion (9) and cultured on collagen-coated coverslips. Normal human 

parathyroid cells were obtained by collagenase-digestion following neck surgery (9; procedures performed 

under institutional ethical guidelines and with patients’ written informed consent). PTH levels were 

quantified by ELISA following perifusion with buffer containing (mM) 125 NaCl, 4 KCl, 1.25 CaCl2, 1 

MgCl2, 0.8 Na2HPO4, 20 HEPES (pH 7.4, NaOH) supplemented with 0.1% D-glucose, 2.8mM basal 

amino acid mixture (defined previously (9)) and 1 mg/ml bovine serum albumin. 

Statistical analysis - Data are presented as means ± S.E. and statistical significance determined using 

GraphPad Prism software. 
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 FIGURE LEGENDS 

 

 

FIGURE 1. Effect of changes in pHo on CaR-induced Ca2+
i mobilisation in CaR-HEK cells. A) 

Representative trace showing Ca2+
i changes (Fura-2 ratio) in a single cell (upper trace, “cell”) and “global” 

(lower trace) cluster of (>10) cells in response to elevated [Ca2+]o (2.5 vs 0.5mM control) when pHo was 

changed from 7.4 to 7.6. Changes in [Ca2+]i shown as % control of the area under the curve. n=4 

coverslips; B) Identical except testing the effect of decreased pHo (7.2). n=4 coverslips; *P<0.05, 

***P<0.001  vs first pH 7.4 treatment; +++P<0.001 vs pH 7.6 treatment by repeated measures ANOVA 

(Tukey post-test) performed on the raw data. C) Cells were exposed to buffers containing increasing 

concentrations of Ca2+
o (0.5-10 mM) in either pHo 7.2, 7.4 or 7.6 with the resulting concentration-effect 

curves for Ca2+
i mobilization shown (left) together with their EC50s (right). While the EC50 values were 

significantly different, the maximal responses were not significantly different, despite the apparent trend.  

*P<0.05 vs pH 7.4 by repeated measures ANOVA (Dunnett’s) performed on log EC50 values from 4 

independent experiments (2-5 coverslip replicates per data point, >15 cells per coverslip). D) Similar 

results were obtained using bicarbonate / CO2 buffers, with pH 7.6 increasing Ca2+
i mobilisation and pH 

7.2 decreasing mobilisation in a single cell (upper trace) and “global” cluster of (>10) cells (lower trace) 

in response to 2.5 mM Ca2+
o as before. Relative changes in [Ca2+]i are shown in the bar graph. The 

appropriate pHs were obtained by varying the bicarbonate (and NaCl) concentrations in buffers gassed 

continuously with 5%CO2/95%O2 (g). *P<0.05 vs pH 7.4 treatment by one-tailed paired t-test; n=7 

coverslips. 

 

FIGURE 2. Effect of pHo on CaR-induced ERK activation, actin polymerization and L-Phe 

responsiveness in CaR-HEK cells. A) Representative immunoblot showing ERK phosphorylation 

(pERK) following treatment with 3.5mM Ca2+
o for 10-min under different pHo conditions (7.4 ± 0.2). 

Mean changes in ERK phosphorylation were determined by densitometry and expressed on a bar graph in 

arbitrary units. n=9; *P<0.05, **P<0.01 vs pHo 7.4 by one-way ANOVA (Dunnet’s). B) Representative 

immunofluoresence images (i) showing phalloidin-TRITC staining following CaR-HEK treatment with 

1.5 mM Ca2+
o for 3 hours in buffers of pHo ranging from 7.2 to 7.6. Quantification presented on a bar 

graph as pixels (Phalloidin-TRITC) per unit area in five randomly selected regions of the cells is shown 

below (iii). Also shown are bar graphs from separate experiments where the cells were exposed to either 

0.5 (ii) or 1.8 (iv) mM Ca2+
o. n≥5; *P<0.05, **P<0.01 vs pHo 7.4 by one-way ANOVA (Dunnet’s). C) 

Representative Ca2+
i trace (i) showing CaR-HEK cells stimulated first with 10mM L-Phe (in 1.8 mM 

Ca2+
o) and then with 3 mM Ca2+

o under various pHo conditions as shown (0.5 Ca2+
o, baseline, pH 7.4 

unless otherwise stated). The traces include a typical response in a single cell (grey) as well as the total 

response in the cell cluster (>10 cells; “global”, black). Quantification (panel ii) is shown as a bar graph 
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(% change in L-Phe responsiveness relative to pHo 7.4 control). n=7; **P<0.01 by Repeated Measures 

ANOVA, (Bonferroni’s). 

 

FIGURE 3. Effect of pHo on CaR-induced Ca2+
i mobilization in parathyroid cells. A) Trace showing 

Ca2+
i changes (quantified as a bar graph, as before) in a single cell (upper trace; “cell”) or the “global” 

(lower trace) cluster of cells in the field of view, in response to elevated [Ca2+]o (2.5 vs 0.8mM control) at 

pHo 7.4 or 7.6 (resulting changes normalised to pH 7.4 control). B) Identical experiment except examining 

the effect of lowering pHo (7.2) during CaR stimulation. n=6-8 coverslips; *P<0.05, **P<0.01 vs initial 

pH 7.4 response; ++P<0.01 vs pH 7.6 by Kruskal-Wallis (Dunn’s post-test). 

 

FIGURE 4. Physiological albumin concentration fails to prevent changes in pHo from modulating 

CaR activity. A) Changes in CaR-HEK cell Ca2+
i concentration (measured as before) in a single cell or 

the “global” cluster of cells in response to elevated [Ca2+]o (3 vs 0.5 mM control) in buffer supplemented 

with 5% (w/v) BSA at either pHo 7.6 (i) or 7.2 (ii). The resulting changes (area under the curve) are 

normalised to pH 7.4 control and displayed as a bar graph. B) Identical experiment except using bovine 

parathyroid cells (2.5 vs 0.8mM control at pHo 7.4 or 7.6). n≥5 coverslips; *P<0.05, **P<0.01 vs initial 

pH 7.4 response; +P<0.05 vs pH 7.6 (or 7.2) by Kruskal-Wallis (Dunn’s). 

 

FIGURE 5. Effect of acute pHo changes on pHi in CaR-HEK and parathyroid cells. Ai) Trace showing 

pHi changes (BCECF ratio) in a cluster of CaR-HEK cells in response to elevated [Ca2+]o (2.5 vs 0.5mM 

control) at pHo 7.4 and 7.8. Ammonium chloride (20mM, NH4Cl2) was used as a positive control. 

Quantification comparing control (baseline extrapolated) and treated (actual) values for calculated pHi. 

Aii) Identical experiment except examining the effect of lowering pHo (7.0) and with sodium acetate 

(20mM, NaAc) used as positive control. Bi) Trace showing pHi changes (BCECF ratio) in a cluster of 

bovine parathyroid cells in response to elevated [Ca2+]o (2.5 vs 0.8mM control) at pHo 7.4 and 7.8 (NH4Cl 

positive control). Bii) Identical experiment except examining the effect of lowering pHo (7.0). n=3-7 

coverslips. No significant change (by paired t-test) in pHi occurred following acute changes in pHo in 

either cell type. 

 

FIGURE 6. Extracellular pH modulates CaR-induced suppression of PTH secretion. Human 

parathyroid cells were perifused in 1.2 mM calcium-containing buffers at pHo 7.0-7.8 (at 5-min intervals) 

and PTH secretion quantified as fg per min per cell (A). Quantification of these changes is shown as % 

control in panel B. N=3 independent experiments; *P<0.05 by unpaired t-test (1-tail) on PTH values 

following preliminary experiments investigating the effect of 0.4 unit pHo changes on both human and 

bovine parathyroid cells (not shown). 

FIGURE 7. CaR extracellular domain model showing histidine and free cysteine residue locations 

relative to aspartate and glutamate clusters. A) Histidines and the free cysteine are shown in black with 

the three aspartate / glutamate clusters in light grey (21,22). Not shown are residues CaRH377 and CaRH766 

(located in a transmembrane extracellular loop). B) Immunoblots showing the mutant CaR proteins 

lacking each of the 17 extracellular histidine or free cysteine residues CaR immunoblots compared to 

wild-type (wt) CaR and -actin loading controls. 
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Mutant 
EC50 

(mM) 

Emax 

(%) 
n 

% Inhibition 

by acidosis 

% Stimulation 

by alkalosis 
n 

WT-CaR 4.3 ± 0.3 100 ± 19 16 -20 ± 2 14 ± 3 20 

H134V 4.3 ± 0.3 93 ± 19 6 -22 ± 6 9 ± 4 9 

H192V ***7.6 ± 1.0 118 ± 16 5 -22 ± 9 34 ± 13 7 

H254V 3.9 ± 0.6 90 ± 22 6 -10 ± 5 35 ± 9 6 

H312V 3.3 ± 0.5 80 ± 8 5 -26 ± 5 32 ± 10 6 

H338V 5.7 ± 0.1 162 ± 17 4 -22 ± 7 16 ± 4 6 

H344V * 6.1 ± 0.5 82 ± 6 8 -38 ± 10 55 ± 26 6 

H359V 5.2 ± 0.5 152 ± 22 8 -24 ± 13 11 ± 5 6 

H377V 5.8 ± 0.7 143 ± 11 8 -43 ± 6 19 ± 12 7 

H413V 3.9 ± 0.4 104 ± 20 5 -16 ± 9 13 ± 3 9 

H429V 5.7 ± 0.7 91 ± 11 3 -13 ± 13 9 ± 3 7 

H463V 5.9 ± 1.1 90 ± 13 6 -40 ± 5 23 ± 6 6 

H463V/H466V 4.7 ± 0.3 70 ± 9 9 -17 ± 8 21 ± 5 7 

H495V 4.8 ± 0.6 180 ± 52 3 -11 ± 7 11 ± 6 8 

H766V 3.3 ± 0.2 131 ± 9 9 -22 ± 4 20 ± 8 9 

C482S 3.7 ± 0.7 81 ± 39 3 -36 ± 5 26 ± 8 7 

H429V/H495V 5.0 ± 0.4 53 ± 7 7 -35 ± 4 19 ± 5 7 

H41V >10 - 9 -43 ± 6 22 ± 11 8 

H595V >10 - 9 22 ± 7 13 ± 5 9 

 

TABLE 1. Characterization of the Ca2+
o-sensitivity, relative maximal responses and pHo sensitivity 

of the CaR histidine and free cysteine mutants versus wild-type.  Two independent series of 

experiments tested a) the Ca2+
o-senstivity and maximal response (shown to the left of the thick vertical 

line) for each CaR mutant (extracellular histidine or free cysteine residues replaced with valine or serine 

respectively) versus wild-type (wt)  and also b) the effect of decreasing or increasing pHo by 0.2 units on 

receptor responsiveness (as shown to the right of the line). All but 4 of the CaR mutants exhibited Ca2+
o 

sensitivity not significantly different from wild-type (WT) CaR. For CaRH192V and CaRH344V the EC50 

values for Ca2+
o (mM) were increased significantly. *P<0.05, ***P<0.001 by one-way ANOVA, 

Dunnett’s post-hoc test. Regarding maximal responsiveness to Ca2+
o (Emax), none of these CaR mutants 

responded differently to wild-type (Kruskal-Wallis, Dunn’s multiple comparison test) with the exception 

of CaRH41V and CaRH595V that required additional cotreatment with a positive allosteric modulator (1mM 

R-467) to achieve robust Ca2+
i mobilisation (not shown). Next, none of the mutants exhibited significantly 

altered CaR pHo sensitivity (1-way ANOVA with Dunnett’s; ns, not significant) in response to either 

pathophysiological alkalosis (pHo 7.6) or acidosis (pHo 7.2) in the presence of 3.5mM Ca2+
o. Since 

CaRH41V and CaRH595V lacked responsiveness to 3.5mM Ca2+
o, the % change values quoted for them are 

not directly relative to wild-type CaR, but merely represent the % change of their CaR response from the 

immediately prior response in pH 7.4.  


