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Optimal Solution of Off-line and On-line Generalized Caching

Saied Hosseini-Khayat * and Jerome R. Cox, Jr.

Washington University in St. Louis

Abstract. Network treffic can be reduced signif-
icantly if caching is utilized effectively. As an effort
in this direction we study the replacement problem
that arises in caching of multimedia objects. The size
of objects and the cost of cache misses are assumed
non-uniform. The non-uniformity of size is inher-
ent in multimedia objects, and the non-uniformily of
cost is due to the non-uniformity of size and the fact
that the objects are scatiered throughout the network.
Although a special case of this problem, i.e. the case
of uniform size and cost, has been eztensively stud-
ied, the general case needs a great deal of study. We
present a dynamic programming method of optimally
solving the off-line and on-line versions of this prob-
lem, and discuss the complezxity of this method.
Key words: Generalized caching, network traffic,
network caching, file caching, optimal replacement,
replacement algorithm.

I. INTRODUCTION

Caching is an effective performance enhancement
technique that has been used in computer systems
for decades. A cache is a temporary store for fre-
quently accessed data and its purpose is twofold: to
provide fast access to data, and to reduce traffic be-
tween the main store and the consumer of data. The
ongoing information revolution is creating new appli-
cations which can benefit from caching. Networking
in conjunction with caching will allow information-
on-demand providers to reduce storage and trans-
mission costs. For instance, on-line digital libraries
organized as a network of archive nodes and cache
nodes interconnected with high speed links will serve
a large number of users. The cache nodes will de-
crease the network load by taking advantage of tem-
poral and spatial locality of requests by the users.

*Applied Research Laboratory, Department of Computer
Science, Washington University, Campus Box 1045, One
Brookings Drive, St. Louis MO 63130-4899. email:
saied®arl.wvustl.edu. Tel:(314) 935-4460.

Video caches in video-on-demand systems, for exam-
ple as proposed in [7, 8], will increase the utilization
of the network by caching popular programs ahead
of time during off-peak hours and reduce network
traffic by serving repeated requests by different sub-
scribers. Site-level as well as user-level document
caching tremendously benefits the World Wide Web
services [3, 5], and research in this area is ongoing.
Distributed image databases can also utilize caching
to reduce server and network load. A common fea-

Network

Cache
Requests

Figure 1: A network cache

ture of these new applications is the non-uniform
size of cached objects as well as the non-uniform
cost of cache misses. The cost, whether it is the
waiting time perceived by users or the traffic gener-
ated in the network, normally depends on the size
of items, the distance they travel and other cornmu-
nication link parameters. Also given is the fact that
cache space is always limited. Therefore deciding
which item(s) to replace when a new one arrives is
an important and interesting optimization problem.
This problem has been adequately studied in mem-
ory paging [10, 11], however with the non-uniformity
assumption that holds in the network environment
it deserves a great deal of new research. In this pa-
per, we present a method of optimally solving the
replacement problem. Section II and IIT present the
notations and definition of the problem. In Section
IV we discuss the off-line case, and solve the problem
by transforming it into the shortest path problem.
Section V presents the optimal solution of the on-line
case. Finally Section VI contains our conclusions.



II. NOTATIONS AND ASSUMPTIONS

Given is a finite universe of objects U represented
by {1,2,...,N}. For each object 1 there is a size
a; € RT and a cost ¢; € RT. A cacheisaset BC U

such that
z a; < B ’
ieB
where B is the capacity of the cache.
A sequence of requests p : N — U is denoted by
01,02,... ,0m. By o;p = i we mean that item ¢ is
requested at time k. The mazximum cost of p is

m
Winaz(p) & Z Coy -
k=1

The state of a cache is the set of objects it contains
and may change in response to requests. Let By
denote the state of cache B at time k. The state
space of a cache is

B={ScU| > a<B}
i€es

Note that @ € B. The set S; denotes the collec-
tion of all states containing element j. The state
sequence By, B1,... , B, denotes consecutive states
of the cache in response to a sequence of m requests,
where By is the initial state and B, is the final state.
A caching policy A takes a request sequence p
and a cache of size B at initial state Bp, pro-
duces a state sequence Bi,Bs,...,Bn, and incurs
a cost W(A,p, B) which is defined later. We use
W ({B}, p, B) to denote the cost of a particular state
sequence. The miss indez (normalized cost) is

A W(A,p, B) _

M(A,p, B) W)

Note that: 0 < M < 1.

In this paper, a single cache and non-modifiable,
non-dividable cache objects are considered. We as-
sume that requests to the cache must be served in the
order of arrival and every missing item is loaded into
cache at the time of request. A miss has a penalty
equal to the cost of the missing item, and a hit costs
zero. Every time a new item is loaded, one or more
items may have to be purged. No cost is incurred
for purging an item.

III. DEFINITION: THE GENERALIZED CACHING

PROBLEM

Given a universe U of items with sizes
ay,as,...,a, and costs ¢1,¢2,...,Cn, a cache of
size B in initial state By, and a request sequence
p = 0103 ...0n, find a state sequence {B;}7-, such
that

i. foralli=1,2,...,m, we have

ZajSBy

JEB;

ii. foralli=1,2,...,m, we have

. { (Bi-1 — &) U{o1}
Bi_1

ifo; € Bi
ifo;eBi_y’

where &; C B;_1.

iii. and the cost W({By},p,B) = Y ju, 0k Cop is
minimized, where

0

IV. OFrF-LINE SOLUTION

ifo; € B;_4
ifo; & Bioy

This section present the solution of off-line opti-
mal replacement. In the off-line case, it is assumed
that the sequence of requests is known in advance.
This may be true, for example, in applications for
which an advance schedule of requests is available.
The solution to a special case of this problem with
items of uniform size and cost was shown [2, 6] to be
a policy that replaces, among all items currently in
cache, an item whose next request comes last in the
future (Longest Forward Distance Policy or LFD).
First we show that this policy is not optimal in the
general case. Then we use the Principle of Opti-
mality and dynamic programming [4] to solve the
general problem.

A. LFD is not Optimal

LFD is an off-line policy that replaces an item
in cache whose next request lies furthest in future.
The following example shows that this policy is not
optimal in general. Consider U = {1,2,3,4}, a; =
m=a3=as=1,¢c,=c2=1,¢3 =25, c;3 =10. Let
B=2and p= 1,4,3,2,1,4. Table A shows two
different policies: LFD and another policy A which



ar i Be(lfd) | &(ifd)cs, | Bi(4) | dr(4)co,
11 1 1 i

4 |14 10 14 |10

3 [ 1,3 5 34 |5

3 [ 1,2 1 24 |1

1 |12 0 14 |1

4 14 10 14 |0

Table 1: LFD costs more than Policy A

incurs less cost than LFD: W(A,p,B) = 18 < 27 =
W(LFD,p,B). Therefore LFD does not produce
optimal results in general.

This example demonstrated the case of uniform
size and non-uniform cost. It is easy to show that
LFD also fails when only the sizes or both sizes and
costs are non-uniform.

B. Principle of Optimality

We show that the Principle of Optimality holds
in our problem. This allows us to use dynamic pro-
gramming in finding the optimal state sequence.

THEOREM 1. Principle of Optimality. Given a
universe U of items, a cache B in initial state 3y and
a sequence {ox}iv,, let By, By,... ,By be an opti-
mal state sequence. Suppose B; = S for some i €
{1,2.... ,m}. Then among all state sequences start-
ing at By, fulfilling {o}}i_, and ending S at time i,
the sequence By, Bi, ... ,B;_1,8 has the least cost.
Also among all state sequences starting at S and ful-
filling {ox}7;,,, the sequence S,Bit1,...,Bn has
the least cost.

Proof. Suppose By, BY,...,B!_;,S fulfills {ox}i_,;
and has a lower cost than By, By,...,B;-1,S.
Then By, By, ... ,B{_1,8,Bit1,... , By has an over-
all cost lower than By, By, ... ,B:;-1,S5, Bi+1,... , Bm.
This is a contradiction. Therefore the first claim
holds. Now let 8,8}, ,,... , B, fulfill {ox}i;,, and
have a cost lower cost than &,8;41,...,Bn,, then
By, By, ... ,Bi-1,8,B},,,..., By, has an overall cost
lower than By, Bi,...,Bi-1,8, Bit1,... , Bym, which
is another contradiction. This proves the second
claim. O

C. Dynamic Programming Method

In this section we transform the caching problem
into the problem of finding a shortest path in a spe-
cial class of graphs. Then a customized dynamic

programming algorithm is presented that solves this
problem.

Rnnlg' i
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Figure 2: Layered DAG of a cache

First note the following observations: Caching is a
multi-stage decision process and can be represented
as a multi-layer directed acyclic graph (DAG) (Fig-
ure 2) whose nodes are cache states at particular
times, and whose arcs are transitions between states.
The initial state is the root of this graph. Every
node may have multiple parents and multiple chil-
dren (Figure 3). The associated DAG has m + 1

Figure 3: State transitions

layers (including the root layer containing the root)
corresponding to m requests with nodes in layer ¢
being all states reachable at time ¢ from the roof.
The root nodes in layer 7 > 1 are children of nodes
in the previous layer. A cost is associated with each
arc. The cost is zero if the transition is due to a
hit, and is equal to the cost of the current request
if the transition is due to a miss (Figure 3). There
are possibly multiple paths from the initial state to
each node. Every path from the root to a node in
the last layer {a terminal node) corresponds to a
complete state scquence and the accumulated cost
of arcs along each path is the cost of corresponding
state sequence. An optimal path is one such path
that has the least cost. Thus we are looking for the



“shortest” path from the root to any of the terminal
nodes. Let u be a node in layer ¢ > 1 of the DAG. If
u is on an optimal path, then by the Principle of Op-
timality the optimal path must coincide with a path
from the root to u that has the least cost. Therefore
all but one path from the root to u are redundant
and can be pruned.

Let us introduce some notations: Denote the set
of nodes in layer 7 by V;, and the set of parents of a
node v by A(v). Assign to every node v a cost w(v),
and a special parent A(v) (excluding the root which
has no parents). Denote the cost of an arc from a
node v to a node v’ by w(v,?’'). Lead by the above
observations, let w(v) be the least accumulated cost
from the root to node v. This can be determined
recursively as follows:

w(v) = v‘rgi\a)[w(v') +w(v',v)] .

Also let the special parent A(v) of node v be a par-
ent that minimizes [w(v’) + w(v',v)] . This fact is
used in the following algorithm which proceeds layer
by layer, generates nodes in each layer, and deter-
mines the costs and special parents of nodes. Fi-
nally it picks in the final layer a node with the least
cost. This is an optimal final state and all its spe-
cial ancestors back to the root form an optimal state
sequence.
Algorithm:

1. Start from the initial cache state root. (root €
Vo).

2. For each node in the current layer, generate its
children that correspond to the current request.
Skip this step if this is the final layer V;,.

3. For each node v in the current layer find its cost

_ : ! '
w(v) = g )[W(v ) +w(@,v)],
and its special parent A(v) that minimizes
[w(') + w(v',v)]. (w(root) = 0, A(root) =
null.)

4. If the current layer is not final, proceed to the
next layer and repeat steps 2, 3, 4.

5. Find a node v* in the final layer with the least
cost.

6. Return  {v*, A(v*), A(A(v™)),. .. and

w(v*). End.

,root}

4

The returned value w(v*) is the optimal
caching cost, and the sequence of vertices
{v*, A(2*), A\(A(z*)), ... ,root} is an optimal state se-
quence in the opposite order. This algorithm can be
implemented in such a way that for each node only
its optimal ancestors are kept and the rest deleted
thus saving memory space. The above algorithm has
some resemblance to the relaxation method of find-
ing a shortest path in a graph [4, page 520] and the
Viterbi convolutional decoding algorithm [9, page
331].

D. Discussion

It was shown how to obtain an optimal solution to
the generalized off-line caching. It is worthwhile to
discuss the efficiency of this algorithm. Notice that
the algorithm basically explores a DAG which is as-
sociated with the caching problem at hand. There-
fore the computation time is roughly proportional
the size of the DAG. Also note that the breadth of
the DAG grows at the beginning and then eventu-
ally saturates and will never exceed max;eL|S;| the
maximum number of nodes in a layer. Therefore the
maximum breadth of the DAG is independent of m
the length of request sequence, implying that that
computation time per layer is asymptotically con-
stant with m. The depth (i.e. the number of layers)
of the DAG, on the other hand, is linearly dependent
on only m. Thus the computation time of the algo-
rithm, if everything else is fixed, is O(m). However
if we increase the size of the universe U or the size
of cache B, the breadth grows too rapidly. This is a
result of explosive growth of the state space, which
is characteristic of combinatorial problems. There-
fore, unless a more efficient solution is found, one
must resort to heuristic methods to solve large scale
generalized caching problems.

We implemented this algorithm and performed
two types of experiments. First, we were interested
in comparing the performance of LFD (non-optimal)
and the dynamic programming method (optimal).
Our experiments showed that although LFD is not
optimal, it performs relatively close to optimal in
typical cases. For example, we picked a universe of
20 items with sizes 1, 2, 3,4, 5,6, 7, 8, 9, 10, 10, 9, 8,
7.6,5,4,3,2,1and costs 2, 2, 5, 5, 9, 10, 10, 10, 10,
10, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, respectively. The cache
size was 20. Both LFD and dynamic programming
method were applied to 100 randomly generated se-
quences of length 1000, and their miss indices were



compared. The difference was less than 7% of the
optimal value.

In an effort to approximate the optimal, another
set of experiments was carried out to observe the ef-
fect of deleting all except N best (least cost) nodes
in every layer as the algorithm proceeds. The result
was surprisingly good. As an example, in one exper-
iment we used the same universe of objects as above,
generated a random request sequence of length 1000
(with the maximum cost Wp,.:(p) = 5593) and set
the cache size to 30. First we ran the optimal method
and computed the optimal cost. The maximum
breadth of the DAG of this problem was 7523 nodes.
Then a modified algorithm was run which performed
node deletion as described above with different val-
ues of parameter V. The results is tabulated below.

| N | Cost | Deviation ||

2 2306 | 5%

5 1883 | 42%

10 1711 | 30%
20 1554 | 18%

50 1404 | 6%

100 1350 | 2%

200 1327 | 0.6%
300 1322 | 0.2%
1000 || 1319 | 0%

o0 1319 { optimal

Table 2: Percentage of deviation vs. N

This table shows that even when the breadth of
the DAG is squeezed to 1.33% of its maximum value
(by keeping N = 100 best nodes in each layer) the
computed cost deviates from the optimal by only
2% ! This indicates that computation time can be
reduced drastically if a slight increase in cost is ac-
ceptable.

V. ON-LINE SOLUTION

Now we present the solution of on-line optimal re-
placement. In this case, the requests arrive one at a
time and the algorithm must decide before the next
request arrives. An algorithm is called on-line if re-
placement decisions are made without knowledge of
future requests. In the worst case, an on-line al-
gorithm can incur the maximum cost Wpe{p) of
a sequence. However if requests are generated ac-
cording to a probabilistic model, the problem will

become that of finding a policy that minimizes the
expected cost of caching a sequence. In this paper
we assume the following:

Assumption: Requests are generated according
to an irreducible aperiodic Markov chain with tran-
sition probability matriz [p;;).

This can be a good model for World Wide Web
browsing in which the next request is highly depen-
dent on the current request. Also it contains the
independent request model as a special case. With
the above assumption, caching can be viewed as a
discrete-time Markov decision process [12] in the fol-
lowing way: Let the state space of our system be
S =BxU. A system state at any time is an ordered
pair of the current cache state and the current re-
quest. Corresponding to every state s € S there is a
set of actions A(s). An action a € A(s) is described
by a set of items to be purged from cache and its
cost c(e, s) is the total cost of items it purges. A
policy is a set of actions, one for each system state.
It prescribes one action when it sees the system in
a particular state. If at a decision epoch the system
is in state s = (S, 1) and action a € ,A(s) is chosen,
then regardless of the past history of the system, the
following happens:

(a) An immediate cost c(s,a) is incurred.

(b) At the next decision epoch the system will be in
state (S, 7) with probability p;;, and such that
S'=(5-A(s)) u{s}.

The value iteration algorithm [12, page206] com-
putes recursively for k = 1,2,... the value function

Yi(s) = n:ﬂ?) {C(s,a) + Zpink—l(S')} S ES,

ag s'eS

starting with Yp(s) = 0, s € S. The quantity Yi(s)
is the minimal total expected cost of actions when
the system starts at s and continue for & decisions.
From the above we obtain an optimal policy, i.e.
one action for each system state, that minimizes the
expected total cost of actions over a finite horizon
of k& decision epochs. Let us define the minimum
expected cost of actions per request as

g(s) & lim -l-Yk(s), s€S
k—oo k
Notice that minimizing the value function (the total

cost of purged items) is not the objective of caching.
Rather the goal is to minimize the total cost of



loaded items. However, in the long run since the
total cost of purged items is equal to the total cost
of loaded items, then g(s) is also the minimum ex-
pected cost per request of caching. In practice, one
is usually satisfied with a policy whose expected cost
per request is sufficiently close to g(s). Define

M, & ng: [Yi(s) = Yi—1(9)] »

mx £ mig [Yi(s) = Ya1(5)] -

If k is increased until 0 < My — my < emyg, then by
Theorem 3.4.1 in [12] the expected cost per request
cannot deviate more then 100e% from g(s).

A. Discussion

It was shown that stochastic dynamic program-
ming can solve the optimal on-line caching prob-
lem. The same approach was used in [1] for the
memory paging problem. However, the drawback in
both cases is the rapid growth of the state space.
For this and other reasons, heuristic methods such
as LRU (Least Recently Used) and LFU (Least Fre-
quently Used) have been used in caching for decades.
Therefore heuristic solutions must be used in large
scale caching problems. We are studying generalized
heuristics that take into account the size and cost of
items.

VI. CONCLUSION

We showed that the off-line and on-line general-
ized caching can be solved optimally by means of dy-
namic programming. This approach, however, due
to the explosive growth of its state space, has lim-
ited practicality. We think that it is unlikely, as in
many other combinatorial problems, to find a practi-
cal optimal solution, and therefore efforts must be di-
rected towards finding effective and practical heuris-
tics. One such heuristic in the off-line case can be the
LFD algorithm which is optimal only when the sizes
and costs are uniform. Our experiments show that
LFD performs close to optimal when the request se-
quences are not pathological. Another finding is that
a trade-off between computation time and optimal-
ity is possible when, in the off-line method, all but
N best paths are omitted as the algorithm proceeds.
This may be a fruitful direction of research toward
approximate solutions.
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