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 In this paper, we present advances in singularity cancellation techniques 
applied to integrals in BEM formulations that are nearly hypersingular.  
Significant advances have been made recently in singularity cancellation 
techniques applied to 1 R  type kernels [M. Khayat, D. Wilton, IEEE Trans. 
Antennas and Prop., 53, pp. 3180-3190, 2005], as well as to the gradients of these 
kernels [P. Fink, D. Wilton, and M. Khayat, Proc. ICEAA, pp. 861-864, Torino, 
Italy, 2005] on curved subdomains.  In these approaches, the source triangle is 
divided into three tangent subtriangles with a common vertex at the normal 
projection of the observation point onto the source element or the extended 
surface containing it.  The geometry of a typical tangent subtriangle and its local 
rectangular coordinate system with origin at the projected observation point is 
shown in Fig. 1. 
 Whereas singularity cancellation techniques for 1 R  type kernels are now 
nearing maturity, the efficient handling of near-hypersingular kernels still needs 
attention.  For example, in the gradient reference above, techniques are presented 
for computing the normal component of the gradient relative to the plane 
containing the tangent subtriangle.  These techniques, summarized in the 
transformations in Table 1, are applied at the sub-triangle level and correspond 
particularly to the case in which the normal projection of the observation point 
lies within the boundary of the source element.  They are found to be highly 
efficient as z approaches zero.  Here, we extend the approach to cover two 
instances not previously addressed.  First, we consider the case in which the 
normal projection of the observation point lies external to the source element.  For 
such cases, we find that simple modifications to the transformations of Table 1 
permit significant savings in computational cost.  Second, we present techniques 
that permit accurate computation of the tangential components of the gradient; 
i.e., tangent to the plane containing the source element. 
 
 
 
 
 
 
 
 
 

Uφ  

z
r  

Lφ  

x  
h  

y
Figure 1.  Subtriangle geometry.
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Table 1: Summary of Gradient Transformations
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