39 research outputs found

    Carbon Nanofibers: Evaluation of Life Cycle Environmental Impacts

    Get PDF

    The Impact of Ocean Acidification on the Functional Morphology of Foraminifera

    Get PDF
    Culturing experiments were performed on sediment samples from the Ythan Estuary, N. E. Scotland, to assess the impacts of ocean acidification on test surface ornamentation in the benthic foraminifer Haynesina germanica. Specimens were cultured for 36 weeks at either 380, 750 or 1000 ppm atmospheric CO2. Analysis of the test surface using SEM imaging reveals sensitivity of functionally important ornamentation associated with feeding to changing seawater CO2 levels. Specimens incubated at high CO2 levels displayed evidence of shell dissolution, a significant reduction and deformation of ornamentation. It is clear that these calcifying organisms are likely to be vulnerable to ocean acidification. A reduction in functionally important ornamentation could lead to a reduction in feeding efficiency with consequent impacts on this organism's survival and fitness

    The impact of ocean acidification on the functional morphology of foraminifera

    Get PDF
    This work was supported by the NERC UK Ocean Acidification Research Programme grant NE/H017445/1. WENA acknowledges NERC support (NE/G018502/1). DMP received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland). MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions.Culturing experiments were performed on sediment samples from the Ythan Estuary, N. E. Scotland, to assess the impacts of ocean acidification on test surface ornamentation in the benthic foraminifer Haynesina germanica. Specimens were cultured for 36 weeks at either 380, 750 or 1000 ppm atmospheric CO2. Analysis of the test surface using SEM imaging reveals sensitivity of functionally important ornamentation associated with feeding to changing seawater CO2 levels. Specimens incubated at high CO2 levels displayed evidence of shell dissolution, a significant reduction and deformation of ornamentation. It is clear that these calcifying organisms are likely to be vulnerable to ocean acidification. A reduction in functionally important ornamentation could lead to a reduction in feeding efficiency with consequent impacts on this organism’s survival and fitness.Publisher PDFPeer reviewe

    Is There Evidence of "Whitening" For Asian/White Multiracial People in Britain?

    Get PDF
    Growing rates of interracial unions in multi-ethnic societies such as Britain are notable, and point to significant changes in the blurring and possibly shifting nature of ethnic and racial boundaries. Asian Americans who partner with White Americans are assumed to engage in “whitening” – both in terms of their aspirations and their social consequences. Yet little is still known about the aftermath of intermarriage, even in the USA. Drawing on this US literature, this paper considers the whitening thesis in relation to multiracial people in Britain, with a particular focus on Asian/White multiracial people. I draw upon the findings of two British studies – one of multiracial young people in higher education (Aspinall & Song 2013), and another of multiracial people who are parents (Song 2017) – to explore these questions. I argue that conceptualizations of part Asian people (in the USA) as leaning toward their White heritages are often unsubstantiated, and deduced primarily from one key factor: their high rates of intermarriage with White spouses. In addition to the variable ways in which part Asian people may relate to their minority and White ancestries, we must consider the ambivalence, tensions, and contextually variable identifications and practices adopted by multiracial people

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    The biological response of foraminifera to ocean acidification

    Get PDF
    Elevated atmospheric concentrations of carbon dioxide (CO₂), partly driven by anthropogenic activity, are decreasing the pH of the oceans. This thesis aimed to assess the biological response of foraminifera to ocean acidification. Foraminifera are single-celled organisms that form the dominant component of many marine communities. A series of laboratory experiments were carried out on benthic intertidal foraminifera from the Eden and Ythan estuaries, NE Scotland, to assess the impacts of ocean acidification. The responses of two dominant intertidal species of foraminifera (Haynesina germanica and Elphidium williamsoni) to ocean acidification were initially investigated in a short-term (6 week) experiment. Multiple species and multiple stressors (seasonal temperature regime and elevated CO₂) were then incorporated in a long-term (18 month) mesocosm study to investigate the physiological consequences (e.g. survival, growth) of ocean acidification. Survival of both Haynesina germanica and Elphidium williamsoni was significantly reduced under low pH conditions. Live specimens of both these calcareous species were however recorded at low pH, in reduced numbers. Following long-term exposure to ocean acidification, foraminiferal populations were still dominated by calcareous forms. Agglutinated foraminifera were recorded throughout the long-term incubations but their numbers were not high enough in the initial sediment collections to allow them to contribute significantly to the populations. Overall, survival of all foraminifera was greatly reduced in elevated CO₂ treatments. Temperature effects were observed on foraminiferal survival and diversity with the largest CO₂ effects recorded under the seasonally varying temperature regime. Foraminiferal test damage for all live species was also highest under elevated CO₂ conditions. Test dissolution was particularly evident in Haynesina germanica with important morphological features, such as functional ornamentation, becoming reduced or completely absent under elevated CO₂ conditions. A reduction in functionally important ornamentation could lead to a reduction in feeding efficiency with consequent impacts on this organism’s survival and fitness. In addition, changes in the relative abundance and activities of these important species could affect biological interactions (e.g. food web function) and habitat quality

    Seawater carbonate chemistry and functional morphology of foraminifera

    No full text
    Culturing experiments were performed on sediment samples from the Ythan Estuary, N. E. Scotland, to assess the impacts of ocean acidification on test surface ornamentation in the benthic foraminifer Haynesina germanica. Specimens were cultured for 36 weeks at either 380, 750 or 1000 ppm atmospheric CO2. Analysis of the test surface using SEM imaging reveals sensitivity of functionally important ornamentation associated with feeding to changing seawater CO2 levels. Specimens incubated at high CO2 levels displayed evidence of shell dissolution, a significant reduction and deformation of ornamentation. It is clear that these calcifying organisms are likely to be vulnerable to ocean acidification. A reduction in functionally important ornamentation could lead to a reduction in feeding efficiency with consequent impacts on this organism's survival and fitness

    Visualizing Your Carbon Footprint

    No full text
    Disclaimer: “UBC SEEDS provides students with the opportunity to share the findings of their studies, as well as their opinions, conclusions and recommendations with the UBC community. The reader should bear in mind that this is a student project/report and is not an official document of UBC. Furthermore readers should bear in mind that these reports may not reflect the current status of activities at UBC. We urge you to contact the research persons mentioned in a report or the SEEDS Coordinator about the current status of the subject matter of a project/report.”Arts, Faculty ofPublic Policy and Global Affairs, School ofUnreviewedGraduat
    corecore