2,163 research outputs found
Probing the isovector transition strength of the low-lying nuclear excitations induced by inverse kinematics proton scattering
A compact approach based on the folding model is suggested for the
determination of the isoscalar and isovector transition strengths of the
low-lying () excitations induced by inelastic proton
scattering measured with exotic beams. Our analysis of the recently measured
inelastic O+p scattering data at and 43 MeV/nucleon
has given for the first time an accurate estimate of the isoscalar
and isovector deformation parameters (which cannot be determined from
the (p,p') data alone by standard methods) for 2 and excited
states in O. Quite strong isovector mixing was found in the 2
inelastic O+p scattering channel, where the strength of the isovector
form factor (prototype of the Lane potential) corresponds to a
value almost 3 times larger than and a ratio of nuclear transition
matrix elements .Comment: 5 pages, 3 figure
Gravitational Collapse: Expanding and Collapsing Regions
We investigate the expanding and collapsing regions by taking two well-known
spherically symmetric spacetimes. For this purpose, the general formalism is
developed by using Israel junction conditions for arbitrary spacetimes. This
has been used to obtain the surface energy density and the tangential pressure.
The minimal pressure provides the gateway to explore the expanding and
collapsing regions. We take Minkowski and Kantowski-Sachs spacetimes and use
the general formulation to investigate the expanding and collapsing regions of
the shell.Comment: 12 pages, 4 figures, accepted for publication in Gen. Relativ. Gra
A toy model of fractal glioma development under RF electric field treatment
A toy model for glioma treatment by a radio frequency electric field is
suggested. This low-intensity, intermediate-frequency alternating electric
field is known as the tumor-treating-field (TTF). In the framework of this
model the efficiency of this TTF is estimated, and the interplay between the
TTF and the migration-proliferation dichotomy of cancer cells is considered.
The model is based on a modification of a comb model for cancer cells, where
the migration-proliferation dichotomy becomes naturally apparent. Considering
glioma cancer as a fractal dielectric composite of cancer cells and normal
tissue cells, a new effective mechanism of glioma treatment is suggested in the
form of a giant enhancement of the TTF. This leads to the irreversible
electroporation that may be an effective non-invasive method of treating brain
cancer.Comment: Submitted for publication in European Physical Journal
Hadron Structure on the Lattice
A few chosen nucleon properties are described from a lattice QCD perspective:
the nucleon sigma term and the scalar strangeness in the nucleon; the vector
form factors in the nucleon, including the vector strangeness contribution, as
well as parity breaking effects like the anapole and electric dipole moment;
and finally the axial and tensor charges of the nucleon. The status of the
lattice calculations is presented and their potential impact on phenomenology
is discussed.Comment: 17 pages, 9 figures; proceedings of the Conclusive Symposium of the
Collaborative Research Center 443 "Many-body structure of strongly
interacting systems", Mainz, February 23-25, 201
Experimental study of heat transfer and pressure drop in micro-channel based heat sinks with tip clearance
This article presents an experimental study on the optimisation of micro-heat sink configurations when both thermal effects and pressure drop are accounted for. The interest of the latter is that the practical engineering viability of some of these systems also depends on the required pumping power. The working fluid was water and, according to typical power dissipation and system size requirements, the considered fluid regime was either laminar or transitional, and not fully developed from the hydrodynamics point of view. Five configurations were considered: a reference geometry (selected for comparison purposes) made up of square section micro-channels, and four alternative configurations that involved the presence of a variable tip clearance in the design. The performance of the different configurations was compared with regard to both cooling efficiency and pressure drop. Finally, we also provide some practical guidelines for the engineering design of these types of systems
Supermassive Black Hole Binaries: The Search Continues
Gravitationally bound supermassive black hole binaries (SBHBs) are thought to
be a natural product of galactic mergers and growth of the large scale
structure in the universe. They however remain observationally elusive, thus
raising a question about characteristic observational signatures associated
with these systems. In this conference proceeding I discuss current theoretical
understanding and latest advances and prospects in observational searches for
SBHBs.Comment: 17 pages, 4 figures. To appear in the Proceedings of 2014 Sant Cugat
Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed.
C.Sopuerta (Berlin: Springer-Verlag
Bi-allelic JAM2 Variants Lead to Early-Onset Recessive Primary Familial Brain Calcification.
Primary familial brain calcification (PFBC) is a rare neurodegenerative disorder characterized by a combination of neurological, psychiatric, and cognitive decline associated with calcium deposition on brain imaging. To date, mutations in five genes have been linked to PFBC. However, more than 50% of individuals affected by PFBC have no molecular diagnosis. We report four unrelated families presenting with initial learning difficulties and seizures and later psychiatric symptoms, cerebellar ataxia, extrapyramidal signs, and extensive calcifications on brain imaging. Through a combination of homozygosity mapping and exome sequencing, we mapped this phenotype to chromosome 21q21.3 and identified bi-allelic variants in JAM2. JAM2 encodes for the junctional-adhesion-molecule-2, a key tight-junction protein in blood-brain-barrier permeability. We show that JAM2 variants lead to reduction of JAM2 mRNA expression and absence of JAM2 protein in patient's fibroblasts, consistent with a loss-of-function mechanism. We show that the human phenotype is replicated in the jam2 complete knockout mouse (jam2 KO). Furthermore, neuropathology of jam2 KO mouse showed prominent vacuolation in the cerebral cortex, thalamus, and cerebellum and particularly widespread vacuolation in the midbrain with reactive astrogliosis and neuronal density reduction. The regions of the human brain affected on neuroimaging are similar to the affected brain areas in the myorg PFBC null mouse. Along with JAM3 and OCLN, JAM2 is the third tight-junction gene in which bi-allelic variants are associated with brain calcification, suggesting that defective cell-to-cell adhesion and dysfunction of the movement of solutes through the paracellular spaces in the neurovascular unit is a key mechanism in CNS calcification
On the Nature and Genesis of EUV Waves: A Synthesis of Observations from SOHO, STEREO, SDO, and Hinode
A major, albeit serendipitous, discovery of the SOlar and Heliospheric
Observatory mission was the observation by the Extreme Ultraviolet Telescope
(EIT) of large-scale Extreme Ultraviolet (EUV) intensity fronts propagating
over a significant fraction of the Sun's surface. These so-called EIT or EUV
waves are associated with eruptive phenomena and have been studied intensely.
However, their wave nature has been challenged by non-wave (or pseudo-wave)
interpretations and the subject remains under debate. A string of recent solar
missions has provided a wealth of detailed EUV observations of these waves
bringing us closer to resolving their nature. With this review, we gather the
current state-of-art knowledge in the field and synthesize it into a picture of
an EUV wave driven by the lateral expansion of the CME. This picture can
account for both wave and pseudo-wave interpretations of the observations, thus
resolving the controversy over the nature of EUV waves to a large degree but
not completely. We close with a discussion of several remaining open questions
in the field of EUV waves research.Comment: Solar Physics, Special Issue "The Sun in 360",2012, accepted for
publicatio
Effect of leaf temperature on estimating physiological traits of wheat leaves from hyperspectral reflectance
A growing number of leaf traits can be predicted from hyperspectral reflectance data. These include structural and compositional traits, such as leaf mass per area, nitrogen and chlorophyll content, but also physiological traits such a Rubisco carboxylation activity, electron transport rate and respiration rate. Since physiological traits vary with leaf temperature, how does this impact on predictions made from reflectance measurements? We investigated this with two wheat varieties, by repeatedly measuring each leaf through a sequence of temperatures imposed by varying the air temperature in a growth room. The function predicting Rubisco capacity normalised to 25 °C predicted the same value, regardless of leaf temperatures ranging from 20 to 35°C. Leaf temperature affected none of the predicted traits: Vcmax25, J, chlorophyll content, LMA, N content per unit leaf area or Vcmax25/N. However, as others have derived models to predict Rubisco activity that includes variation associated with leaf temperature, we discuss whether these functions may include a temperature signal within the reflectance spectra
MATHEMATICAL MODELLING FOR MAGNETITE (CRUDE) REMOVAL FROM PRIMARY HEAT TRANSFER LOOP BY ION-EXCHANGE RESINS
The present research focuses to develop mathematical model for the removal of iron (magnetite) by ion-exchange resin from primary heat transfer loop of process industries. This mathematical model is based on operating capacities (that's provide more effective design as compared to loading capacity) from static laboratory tests. Results showed non-steady state distribution of external Fe2+ and limitations imposed on operating conditions, these conditions includes; loading and elution cycle time, flow rate, concentration of both loading and removal, volume of resin required. Number of generalized assumptions was made under shortcut modeling techniques to overcome the gap of theoretical and actual process design.
KEY WORDS: Magnetite, Mathematical modeling, Ion-exchange resin, Operating capacity, Loading capacity
Bull. Chem. Soc. Ethiop. 2009, 23(1), 129-133
- …
