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Abstract 15 

A growing number of leaf traits can be predicted from hyperspectral reflectance data. These 16 

include structural and compositional traits, such as leaf mass per area, nitrogen and 17 

chlorophyll content, but also physiological traits such a Rubisco carboxylation activity, 18 

electron transport rate and respiration rate. Since physiological traits vary with leaf 19 

temperature, how does this impact on predictions made from reflectance measurements? 20 

We investigated this with two wheat varieties, by repeatedly measuring each leaf through a 21 

sequence of temperatures imposed by varying the air temperature in a growth room. The 22 

function predicting Rubisco capacity normalised to 25 °C predicted the same value, 23 

regardless of leaf temperatures ranging from 20 to 35°C. Leaf temperature affected none of 24 

the predicted traits: Vcmax25, J, chlorophyll content, LMA, N content per unit leaf area or 25 

Vcmax25/N. However, as others have derived models to predict Rubisco activity that includes 26 

variation associated with leaf temperature, we discuss whether these functions may include 27 

a temperature signal within the reflectance spectra. 28 

Keywords: Leaf temperature, hyperspectral reflectance, Rubisco carboxylation activity, 29 

electron transport rate, leaf dry mass per area, chlorophyll content, leaf nitrogen, Triticum 30 

aestivum 31 

Introduction 32 

Plant breeders continually strive to improve crop yield. For cereals, there has been a 33 

recognition that future increases could benefit from improving photosynthesis (Parry et al., 34 

2011; Reynolds et al., 2009). Crop growth is not simply related to a measurement of 35 

photosynthetic rate of a particular leaf under one condition. Instead, photosynthesis 36 
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integrated over a day with contributions from all the leaves in the canopy drives crop 37 

growth. Subsequent conversion into biomass and the partitioning into harvested grains 38 

determines yield. All these processes combined pose a major challenge on how to 39 

meaningfully measure photosynthesis with the goal of improving yield. However, there are 40 

a few examples that have compared historical sequences of cultivars and observed 41 

correlations between leaf photosynthetic rate and wheat yield (Beche et al., 2014; Fischer et 42 

al., 1998; Gaju et al., 2016; Yao et al., 2019). It has also been found that radiation use 43 

efficiency (above ground biomass produced per unit of intercepted photosynthetically 44 

active radiation) has been increasing over time with changing wheat varieties in both the UK 45 

(Shearman et al., 2005) and Australia (Sadras et al., 2012). Interestingly, both studies found 46 

the same rate of increase (0.012 g MJ
-1

 y
-1

). 47 

It is possible to survey photosynthetic properties between wheat genotypes (Driever 48 

et al., 2014; Silva-Pérez et al., 2019), but detailed phenotyping is time-consuming which 49 

limits the number of genotypes that can be sampled. A promising alternative is to predict 50 

photosynthetic traits from leaf reflectance spectra. Serbin et al. (2012) derived models 51 

predicting nitrogen concentration, leaf dry mass per unit area, maximum Rubisco 52 

carboxylase activity (Vcmax) and photosynthetic electron transport rate (J) from hyperspectral 53 

reflectance measured on leaves of Populus tremuloides and P. deltoides. Leaf temperature 54 

varied between 20 and 30 °C, depending on the glasshouse regime, which strongly 55 

influenced Vcmax. A single model was presented that applied to both species, regardless of 56 

leaf temperature. It was argued that this implied that the derived Vcmax was not being 57 

predicted indirectly from another trait such as nitrogen (Serbin et al., 2012). The 58 

hyperspectral reflectance approach was also successfully used to predict Vcmax for Glycine 59 

max measured between 26 and 34°C (Ainsworth et al., 2014) and Nicotiana tabacum 60 

(Meacham-Hensold et al., 2019) and Zea mays (Yendrek et al., 2017) measured at various 61 

temperatures in the field. 62 

In order to be able to make useful comparisons of Rubisco capacity between plants 63 

which may differ in their leaf temperature during sampling, one needs to know both Vcmax 64 

and leaf temperature. Alternatively, one could use the temperature responses of the 65 

Rubisco enzyme kinetic parameters (Bernacchi et al., 2003; Silva-Perez et al., 2017) to 66 

convert gas exchange estimates of Vcmax to a common temperature, e.g. 25°C (Vcmax25),  67 

which are then used to build a model from reflectance data. This has been done for a group 68 

of 37 broadleaf tree species (Dechant et al., 2017), wheat (Silva-Perez et al., 2018) and 21 69 

tropical tree species from Panama and Brazil (Wu et al., 2019). Heckmann et al. (2017) also 70 

presented predictions of Vcmax for Brassica, Moricandia and Z. mays from reflectance 71 

spectra, but measured only at 25°C. While Dechant et al. (2017) normalised their gas 72 

exchange to 25°C, the reflectance spectra were collected at prevailing leaf temperatures. It 73 

is not known whether the prediction of Vcmax25 from leaf reflectance is insensitive to the 74 

temperature of the leaf during the reflectance measurement. We, therefore, set out to 75 

specifically assess whether leaf trait predictions from hyperspectral reflectance varied with 76 

leaf temperature by repeatedly measuring the same leaf sequentially through a range of 77 

temperatures in two wheat cultivars. We hypothesized that leaf temperature would not 78 

affect predicted values of leaf traits obtained using leaf hyperspectral reflectance. 79 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.21.109652doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.21.109652
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

 80 

Materials and Methods 81 

Plant material and growth conditions  82 

Expt 1 Two spring wheat genotypes (Triticum aestivum Kukri and Seri) were grown in a 83 

naturally lit greenhouse (day/night temperatures set at 25/15 
o
C) at the Australian National 84 

University in Canberra during Sep-Nov 2018. Three seeds were sown in well-drained 3.5-litre 85 

pots filled with commercial potting mix, containing basal fertilizer Osmocote (Scotts). Pots 86 

were laid out according to randomized block design with six replicates and blocks 87 

representing the replications. After emergence, seedlings were thinned down to one plant 88 

per pot. Plants were watered daily until the end of the experiment. 89 

Temperature treatment was given in a controlled environmental chamber, with day/night 90 

temperatures set at 25/15 
o
C and irradiance set to 500 µmol photons m

–2
 s

–1
. All the 91 

measurements were made seven days after anthesis. Plants were moved to the chamber 92 

one day before the actual measurements so that plants could acclimatize to the chamber’s 93 

environmental conditions. The next day, measurements were made at a chamber 94 

temperature of 15, 25, 35 and 15 
o
C, in the described sequence. After achieving the desired 95 

chamber temperature, plants were acclimatized at least 1 hr before the measurements 96 

were made. 97 

Expt 2 Two spring wheat genotypes (Kukri and Seri) and one triticale (Hawkeye) were grown 98 

in a greenhouse with temperature set to 20/15
 o

C (day/night). Seeds were sown on multiple 99 

days in March 2018 and each genotype was sown separately in shallow tray with raising mix. 100 

After germination, seedlings were transplanted into 5L pots filled commercial potting mix, 101 

containing basal fertilizer Osmocote (Scotts). Five-six weeks after sowing, half of the plants 102 

were transferred to an adjacent greenhouse room set at 32/20
 o

C, where they grew for one-103 

two more weeks before gas exchange measurements were made. 104 

Hyperspectral reflectance measurements (Expt 1) 105 

Hyperspectral reflectance spectra were measured with a FieldSpec®4 (Analytical Spectral 106 

Devices, Boulder, CO, USA) full range spectroradiometer (350–2500 nm) attached to a leaf 107 

clip (Analytical Spectral Devices, Boulder, CO, USA) with a fibre optic cable. Leaf clip had an 108 

internal calibrated light source and two external panels i.e. a white panel to calibrate the 109 

instrument and a black panel for taking measurements. A mask containing a black circular 110 

gasket was also attached to leaf clip, which was used to reduce the leaf-clip aperture to an 111 

oval area (1.15 x 1.4 cm = 1.264 cm
2
) suitable for a wheat leaf (Silva Perez ref). For each 112 

temperature, one reflectance measurement was made at the same place of the flag leaf of 113 

each plant by putting the leaf vertically to the leaf probe as explained elsewhere (Silva-Perez 114 

et al., 2018). 115 

Leaf reflectance spectra were processed according to Silva-Perez et al. (2018). A ‘jump’ 116 

correction associated with a change in the detectors at 1000 and 1800 nm was applied 117 

before the traits were predicted.  118 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.21.109652doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.21.109652
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

MultispeQ measurements (Expt 1) 119 

Linear electron transport (LET) and relative chlorophyll content (SPAD units) measurements 120 

were carried out using a handheld MultispeQ (Beta) device linked to the PhotosynQ 121 

platform (www.photosynq.org) (Kuhlgert et al., 2016). Relative chlorophyll content (SPAD 122 

units) was estimated by measuring the transmittance of red (650 nm) and infrared (940 nm) 123 

light. LET was estimated from the measurements of quantum yield of photosystem II (PII) via 124 

pulse-amplitude modulation (PAM) fluorometry at photosynthetically active radiation (PAR) 125 

of 1000 µmol photons m
-2

 s
-1

 (Kuhlgert et al., 2016). 126 

Gas-exchange measurements (Expt 2) 127 

Gas exchange was measured on the most recently fully expanded leaves with a LI-6400XT 128 

Portable Photosynthesis system (LI-COR Biosciences Inc., Lincoln, NE, USA) on plants placed 129 

inside a controlled environment cabinet (Thermoline Science Model-TRIL/SL). The air flow 130 

rate was 500 μmol s
-1

 with a PPFD of 1800 μmol m
-2

 s
-1

 supplied by the LED light. Gas 131 

exchange was measured at leaf temperatures of 15, 25 and 35℃. At each temperature, CO2 132 

response curves were measured in 21% O2 using inlet CO2 concentrations of 400, 50, 100, 133 

150, 250, 400, 600, 800, 1000, 400 μmol mol
-1

. Subsequently, the air was changed to 2% O2 134 

with a CO2 concentration in the leaf chamber of  380 μmol mol
-1

, the flow reduced to 200 135 

μmol s
-1 

and measurement continued for 60 minutes with concurrent sampling for carbon 136 

isotope discrimination to determine mesophyll conductance (Evans and von Caemmerer, 137 

2013). Maximum Rubisco carboxylase activity (Vcmax) was calculated from CO2 response 138 

curves using kinetic constants derived from wheat (Silva-Pérez et al., 2017). 139 

Statistical analysis 140 

Data were subjected to analysis of variance using various packages in R (R coreR, 2013). 141 

Means were compared for significant differences using Tukey's multiple comparison tests at 142 

5% probability level. 143 

Results 144 

The consequence of using leaf reflectance spectra collected from leaves with varying 145 

temperatures to predict leaf traits was investigated with two wheat varieties.  146 

 The predicted value of Vcmax25 was not affected by the leaf temperature when 147 

reflectance spectra were measured, for either cultivar (Fig. 1A). Upon returning the growth 148 

cabinet to 15°C, the Vcmax25 values were not significantly different from the initial values. By 149 

contrast, Vcmax values derived from gas exchange increased fourfold between 15 and 35°C 150 

(Fig. 1B). Values for wheat grown under cool or hot conditions showed a difference at 35°C, 151 

with the cool grown plants falling further below the theoretical line (consistent with an Ea of 152 

63kJ mol
-1

) than plants from the hot treatment. The values for plants from the hot 153 

treatment superimpose the previously published data from Silva-Perez et al. (2017). 154 

 Predicted values for the rate of electron transport, J, were also independent of the 155 

leaf temperature when reflectance spectra were measured (Fig. 2A). In this case, the model 156 

was built from data collected under a PPFD of 1800 μmol m
-2

 s
-1

 and leaf temperatures 157 
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mainly at 25°C but ranging up to 32°C. However, in contrast to Vcmax, J is less sensitive to leaf 158 

temperature, increasing by 30% between 15 and 25°C and then plateauing (Fig. 2B). The 159 

temperature responses of J were comparable to the previously published data from Silva-160 

Perez et al. (2017). Growth temperature shifted the temperature response. For plants 161 

grown under hot conditions, J was less than that from plants grown under cool conditions at 162 

15°C but greater at 35°C. We also measured J using a MultispeQ instrument following the 163 

collection of leaf reflectance spectra at each temperature (denoted LET, Fig. 2A). This was 164 

measured under a PPFD of 1000 μmol m
-2

 s
-1

, similar to the irradiance in the growth cabinet. 165 

As it was collected rapidly, it does not represent the steady state. However, it also indicated 166 

that the rate of electron transport was similar between 20 and 30°C, then declined slightly 167 

at 35°C.  168 

 Predicted values of chlorophyll content were insensitive to the leaf temperature 169 

when reflectance spectra were measured (Fig. 3). A similar result was observed for 170 

chlorophyll content estimated with the MultispeQ.  The absolute values obtained with the 171 

MultispeQ were about 20% greater than that predicted from reflectance. The chlorophyll 172 

content values are predicted from reflectance using a model built on measurements using 173 

SPAD-502 chlorophyll meter (Minolta Camera Co., Ltd, Japan) whereas the MultispeQ uses 174 

relative transmissions of red (650 nm) and infrared (940 nm) light. Additionally, MultispeQ 175 

has two in built differences from Minolta SPAD; 1) MultispeQ takes a series of transmittance 176 

measurements over a range of increasing light intensities, and 2) MultispeQ also averages 177 

values over a larger leaf area (~ 1 cm
2
) (Kuhlgert et al. 2016). Nevertheless, additional 178 

calibration comparisons were not made as the focus was on temperature. Values predicted 179 

for three other leaf traits, leaf dry mass per unit leaf area (LMA), nitrogen content and 180 

Rubisco carboxylation capacity normalised to 25
 o

C per unit leaf nitrogen (Vcmax25/N), were 181 

also independent of the leaf temperature when reflectance spectra were measured (Fig. 4). 182 

A statistical comparison of the effects of temperature treatments on various measured and 183 

predicted leaf traits is also provided separately (Supp. Table 1). 184 

 The spectral response of correlations between single wavelength reflectance values 185 

and leaf temperature is shown superimposed on the reflectance spectrum (Fig. 5). Clear 186 

correlations were observed on the long wavelength shoulders of the two water absorption 187 

bands with peaks at 1531 and 2038nm and a third peak in the red edge at 720nm. By 188 

sequentially adding weighted reflectance values from single wavelengths, we were able to 189 

predict leaf temperature remarkably well with just four wavelengths (Fig. 6).  190 

Discussion 191 

Leaf hyperspectral reflectance is an optical signal that can provide information 192 

remotely and rapidly. With appropriate calibration data obtained from other methods, 193 

predictive models can be built for a range of leaf traits. The method has potential for use as 194 

a high-throughput tool for phenotyping photosynthetic traits at the leaf and canopy scale. 195 

While one might expect leaf reflectance to enable prediction of the amount of a substance 196 

e.g. leaf dry mass or nitrogen per unit area, it is harder to understand how physiological 197 

processes such as rates of reactions could contribute to reflectance. Thus, with Rubisco 198 
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being such a major constituent of leaf protein, a reflectance model could arise from a signal 199 

associated with leaf protein or nitrogen, as argued by Dechant et al. (2017). If this was the 200 

case, then changing leaf temperature would alter Rubisco activity but not Rubisco content. 201 

However, Serbin et al. (2012) successfully included variation in leaf temperature to derive a 202 

model predicting Rubisco activity, demonstrating that the model was not fundamentally 203 

associated with another constituent such as nitrogen. In contrast to gas exchange 204 

measurements, where leaf temperature is measured directly to enable the calculation of 205 

stomatal conductance, leaf temperature is not generally measured directly during the 206 

collection of hyperspectral reflectance. Consequently, it is necessary to consider how leaf 207 

temperature affects the estimation of physiological traits, such as Vcmax and J, using leaf 208 

hyperspectral reflectance.  209 

Parameters independent of temperature 210 

A leaf structural property that has been widely reported is leaf dry mass per unit leaf 211 

area as it is easy to measure and relates to lifespan and other traits (Wright et al., 2004). 212 

Robust predictions of LMA can be made from hyperspectral reflectance data (Ecarnot et al., 213 

2013; Serbin et al., 2012; Silva-Perez et al., 2018). As LMA is a leaf property that would not 214 

change in response to short term changes in temperature, models predicting LMA from 215 

hyperspectral reflectance should also be insensitive to the temperature of the leaf during 216 

measurement. This was found to be true for LMA (Fig. 4A) as well as for other leaf 217 

constituents, chlorophyll (Fig. 3) and nitrogen (Fig. 4B). 218 

Photosynthesis is a process involving many constituents, but has been successfully 219 

modelled in C3 plants by considering the properties of Rubisco (Farquhar et al., 1980). 220 

Knowing the amount of Rubisco per unit leaf area, its properties and a few assumptions, it is 221 

possible to predict photosynthetic responses to irradiance, atmospheric CO2 and 222 

temperature. The amount of Rubisco is unlikely to vary significantly during short term 223 

changes in leaf temperature, but the carboxylase activity is strongly temperature dependent 224 

(Badger and Collatz, 1977; Bernacchi et al., 2001; Sharwood et al., 2016). Therefore, models 225 

using reflectance to predict Rubisco content or activity normalised to a fixed temperature 226 

should be independent of leaf temperature. Indeed, this was what we observed (Fig. 1A).  227 

Parameters that vary with temperature 228 

Enzyme activities vary with temperature which can be described with the Arrhenius 229 

equation through the energy of activation term Ea. Vcmax  is the product  of Rubisco content 230 

and catalytic rate. It seems possible that models predicting Vcmax from reflectance 231 

(Ainsworth et al., 2014; Serbin et al., 2012) may contain two components, one that is 232 

independent of temperature (representing Rubisco protein content) and another that varies 233 

with leaf temperature. Immediately prior to placing the leaf into the clip for measuring leaf 234 

reflectance, Ainsworth et al. (2014) measured leaf temperature with an infrared 235 

thermometer, but they only report the relationship between predicted Vcmax and leaf 236 

temperature. We, therefore, looked at our reflectance spectra collected at different leaf 237 

temperatures to see if we could predict leaf temperature. Predicted leaf temperature, using 238 

reflectance of just four wavelengths, clearly correlated with measured leaf temperature, 239 
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with an r
2
 of 0.91 (Fig. 6). It is unlikely that this equation has general application as it arose 240 

from only two genotypes measured under one environment and it is known that the power 241 

and generality of models predicting dark respiration (Coast et al., 2019) and Vcmax25 (Wu et 242 

al., 2019) improved as the diversity of calibration data increased. However, the point is that 243 

leaf temperature apparently can be extracted from reflectance spectra which could explain 244 

how models can predict reaction rates from reflectance. 245 

The Arrhenius equation predicts an exponential increase in rate with increasing 246 

temperature, whereas models calculating parameters from reflectance sum linear 247 

weightings of each reflectance at each wavelength and would, therefore, have linear 248 

responses to temperature. The difference between an exponential and a linear relationship 249 

may not be very noticeable over a narrow temperature range. In the case of Vcmax, values 250 

derived from gas exchange deviated below the Arrhenius function at 35°C (Fig. 1B), such 251 

that a linear function would fit the data well between 15 and 35°C. There are also 252 

indications that a single value for Ea may not be appropriate across the temperature range 253 

from 10 to 40°C. Sharwood et al. (2016) found it necessary to use lower values for Ea at leaf 254 

temperatures above 25°C. The rate of electron transport, J, also varies with temperature 255 

(Bernacchi et al., 2003; June et al., 2004; Medlyn et al., 2002) but reaches a maximum 256 

around 30°C before decreasing again. As a result, the change in J between 20 and 35°C is 257 

less pronounced than for Vcmax. It is therefore uncertain whether models predicting J from 258 

reflectance (Dechant et al., 2017; Serbin et al., 2012; Silva-Perez et al., 2018) would contain 259 

components that vary with temperature. In the case of J for wheat (Silva-Perez et al., 2018), 260 

the reflectance model was built with data that varied little in leaf temperature and the 261 

predicted values of J were found to be unaffected by leaf temperature when reflectance 262 

was measured (Fig. 2A). However, given that J did not vary greatly over this temperature 263 

range (Fig. 2), this may not be a very rigorous test. By contrast, as Serbin et al. (2012) 264 

deliberately used variation in leaf temperature to generate a broader spread in J to build 265 

their reflectance model – testing their function with multiple spectra obtained from a leaf 266 

measured over a range of temperatures could be informative. 267 

Conclusion 268 

 Leaf temperature varying between 20 to 35°C during the measurement of leaf 269 

reflectance did not affect predicted values of leaf traits (Vcmax25, chlorophyll and nitrogen 270 

contents per unit area, LMA and Vcmax/N), for wheat. It was possible to extract leaf 271 

temperature from reflectance spectra which may explain how models that predict rates that 272 

vary with temperature (Vcmax, J, dark respiration) could arise. Models predicting traits that 273 

vary with leaf temperature should be tested using multiple measurements from each leaf 274 

covering a range of temperature. Reflectance appears to have the potential to predict leaf 275 

temperature, but to construct a robust model would require calibration with a broader set 276 

of experiments.  277 
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Supplementary. Table 1. Effects of leaf temperature on leaf physiological traits measured using MulitispeQ (leaf temperature, LET, relative chlorophyll) or 

predicted from leaf hyperspectral reflectance (Vcmax25, J, chlorophyll content, LMA, nitrogen content, Vcmax25/N) in leaves of two wheat genotypes exposed to 

a sequence of ambient air temperatures i.e. 15, 25, 35 and 15 oC, in a growth chamber (Expt 1). Symbols represent the mean ± SE of six different leaves 

from six different plants. Sequential measurements were made on each leaf, seven days after anthesis. 

Genotype 
Ambient Air 

Temperature 

Measured traits using MultispeQ  Predicted traits using leaf hyperspectral reflectance 

Leaf 

Temperature 

(
o
C) 

LET 

(µmol e- m-2 s-1) 

Relative 

Chlorophyll  

(SPAD units) 

 Vcmax25 

(µmol CO2 s
-1 

g
-1

 (N)) 

J 

(µmol e- m-2 s-1) 

Chlorophyll 

content 

(SPAD units) 

LMA 

(g m-2) 

Nitrogen 

content 

(g m
-2

) 

Vcmax25/N 

(µmol CO2 

s
-1

 g
-1

 (N)) 

Kukri 15 oC 19.6 + 0.4 142.9 ± 7.0 59.8 ± 0.7  162.5a ± 1.7 196.2ab ± 3.6 51.8ab ± 0.6 54.0 ± 1.2 2.81 ± 0.07 59.6b ± 1.2 

25 oC 26.2 + 0.2 145.2 ± 9.2 59.9 ± 1.0  154.2b ± 1.8 184.9b ± 3.7 52.6a ± 0.4 57.4 ± 0.8 2.90 ± 0.05 59.7b ± 0.9 

35 
o
C 33.4 + 0.3 127.0 ± 4.3 60.6 ± 0.6  161.3

a
 ± 2.2 196.3

ab
 ± 4.5 50.8

b
 ± 0.4 56.3 ± 1.1 2.82 ± 0.06 64.1

a
 ± 0.6 

15 oC 19.5 + 0.3 145.4 ± 8.1 59.2 ± 1.0  165.2a ± 2.6 203.8a ± 5.0 52.7a ± 0.3 55.7 ± 1.1 2.89 ± 0.05 60.6b ± 1.0 

LSD (5%)  n.s. n.s.  6.2** 12.5* 1.3* n.s. n.s. 2.8* 

Seri 15 oC 19.7 + 0.3 144.2a ± 5.2 62.7 ± 0.8  173.9 ± 2.4 209.2 ± 4.0 53.7 ± 0.4 56.9b ± 0.7 3.05 ± 0.05 60.1b ± 0.8 

25 oC 27.3 + 0.1 148.6a ± 6.1 63.3 ± 0.8  169.5 ± 2.2 203.5 ± 3.7 53.8 ± 0.2 58.5ab ± 0.6 3.08 ± 0.05 61.0b ± 0.7 

35 
o
C 34.9 + 0.4 124.9

b
 ± 3.2 64.5 ± 0.8  169.4 ± 2.2 203.7 ± 4.3 53.5 ± 0.4 60.4

a
 ± 0.7 3.05 ± 0.05 65.7

a
 ± 0.7 

15 oC 19.6 + 0.2 145.1a ± 6.5 62.8 ± 0.7  168.4 ± 2.2 208.5 ± 3.7 53.0 ± 0.3 57.9b ± 0.9 2.96 ± 0.04 61.5b ± 0.5 

LSD (5%)  15.9* n.s.  n.s. n.s. n.s. 2.1* n.s. 2.04*** 

*** = P <0.001, ** = P < 0.01, * = P < 0.05, n.s. = non-significant 

 

 

 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

available under a
w

as not certified by peer review
) is the author/funder, w

ho has granted bioR
xiv a license to display the preprint in perpetuity. It is m

ade 
T

he copyright holder for this preprint (w
hich

this version posted M
ay 25, 2020. 

; 
https://doi.org/10.1101/2020.05.21.109652

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/2020.05.21.109652
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

Figures 

0

50

100

150

200

15 20 25 30 35
0.0

0.5

1.0

1.5

2.0

 Seri
 KukriV

cm
ax

25
 (

μm
ol

 m
-2

 s
-1

) A

 Ea

 S-P 2017
 Hot
 Cool

R
el

at
iv

e 
V

cm
ax

 

Leaf temperature (oC)

B

 

Fig. 1. Effects of leaf temperature on Rubisco activity in wheat. A. The maximum rate of 

carboxylation by Rubisco normalised to 25 
o
C (Vcmax25) predicted from leaf hyperspectral 

reflectance measurements at different leaf temperatures. Seven days after anthesis, two 

wheat genotypes were exposed to a sequence of ambient air temperatures i.e. 15, 25, 35 

and 15 
o
C, in a growth chamber (Expt 1). Symbols represent the mean ± SE of six different 

leaves from six different plants. B. Temperature response of Vcmax normalised to 1 at 25
 o

C 

derived from gas exchange measurements (symbols) or modelled (Ea 63 kJ mol
-1

). Data from 

plants grown under hot (20/15 
o
C) or cool (32/20 

o
C) conditions (Expt 2), or from Silva-Perez 

et al. (2017).   
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Fig. 2. Effects of leaf temperature on electron transport rate in wheat. A. Rate of electron 

transport (J) predicted from leaf reflectance under a PPFD of 1800 μmol m
-2

 s
-1

 (solid 

symbols) and linear electron transport (LET) measured using MultispeQ under a PPFD of 

1000 μmol m
-2

 s
-1

 (open symbols) at each leaf temperature. Seven days after anthesis, two 

wheat genotypes were exposed to a sequence of ambient air temperatures i.e. 15, 25, 35 

and 15 
o
C, in a growth chamber (Expt 1). Symbols represent the mean ± SE of six different 

leaves from six different plants. . B. Rates of electron transport calculated from gas 

exchange measurements made under a PPFD of 1800 μmol m
-2

 s
-1

 from plants grown under 

cool (20/15 
o
C) or hot (32/20 

o
C) conditions (Expt 2), or from Silva Perez et al. (2017).  
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Fig. 3. Effects of leaf temperature on estimated chlorophyll content (SPAD units) in wheat. 

Seven days after anthesis,  two wheat genotypes were exposed to a sequence of ambient air 

temperatures i.e. 15, 25, 35 and 15 
o
C, in a growth chamber (Expt 1). Symbols represent the 

mean ± SE of six different leaves from six different plants. Leaf chlorophyll content was 

estimated using two different devices i.e. direct measurements with MultispeQ or predicted 

from leaf hyperspectral reflectance measurements made with an ASD FieldSpec 

Spectroradiometer.  
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Fig. 4. Effects of leaf temperature on parameters predicted from leaf hyperspectral 

reflectance in wheat. A. Leaf dry mass per unit leaf area (LMA). B. Nitrogen content per unit 

leaf area. C. Rubisco carboxylation capacity normalised to 25
 o

C per unit leaf nitrogen 

(Vcmax25/N). Seven days after anthesis, two wheat genotypes were exposed to a sequence of 

ambient air temperatures i.e. 15, 25, 35 and 15 
o
C, in a growth chamber (Expt 1). Symbols 

represent the mean ± SE of six different leaves from six different plants.  
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Fig. 5. Reflectance spectrum from a wheat leaf measured at 27°C (black thick line) with the spectral 

response of the correlation coefficient between leaf temperature and leaf reflectance (red thin line) 

superimposed.  
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Fig. 6. Relationship between leaf temperature predicted from reflectance and measured 

using MultispeQ in wheat. Two wheat genotypes were exposed to a sequence of ambient air 

temperatures i.e. 15, 25, 35 and 15 
o
C which resulted in the leaf temperature increasing 

from 20 to 35°C (solid symbols) then decreased back to 20°C (open symbols) (Expt 1). 

Measurements were made on six different leaves from six different plants. The predicted 

leaf temperature was calculated as: Tleaf = 1071.4 R1531 – 945.65 R1400 – 176.3 R1507 + 196.8 

R697. The fitted regression equation (not shown) was y = 1.015x - 0.4, r
2
 = 0.91.  
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