57 research outputs found

    Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels

    Get PDF
    Large-scale meta-analyses of genome-wide association studies (GWAS) have identified >175 loci associated with fasting cholesterol levels, including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG). With differences in linkage disequilibrium (LD) structure and allele frequencies between ancestry groups, studies in additional large samples may detect new associations. We conducted staged GWAS meta-analyses in up to 69,414 East Asian individuals from 24 studies with participants from Japan, the Philippines, Korea, China, Singapore, and Taiwan. These meta-analyses identified (P < 5 × 10-8) three novel loci associated with HDL-C near CD163-APOBEC1 (P = 7.4 × 10-9), NCOA2 (P = 1.6 × 10-8), and NID2-PTGDR (P = 4.2 × 10-8), and one novel locus associated with TG near WDR11-FGFR2 (P = 2.7 × 10-10). Conditional analyses identified a second signal near CD163-APOBEC1. We then combined results from the East Asian meta-analysis with association results from up to 187,365 European individuals from the Global Lipids Genetics Consortium in a trans-ancestry meta-analysis. This analysis identified (log10Bayes Factor ≥6.1) eight additional novel lipid loci. Among the twelve total loci identified, the index variants at eight loci have demonstrated at least nominal significance with other metabolic traits in prior studies, and two loci exhibited coincident eQTLs (P < 1 × 10-5) in subcutaneous adipose tissue for BPTF and PDGFC. Taken together, these analyses identified multiple novel lipid loci, providing new potential therapeutic targets

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 x 10(-8)), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.Peer reviewe

    Genetic Drivers of Heterogeneity in Type 2 Diabetes Pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P \u3c 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care

    Genetic drivers of heterogeneity in type 2 diabetes pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P &lt; 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.</p

    Membrane Surface Features of Blastocystis Subtypes

    No full text
    Blastocystis is a common intestinal protistan parasite with global distribution. Blastocystis is a species complex composed of several isolates with biological and morphological differences. The surface coats of Blastocystis from three different isolates representing three subtypes were analyzed using scanning electron microscopy. This structure contains carbohydrate components that are also present in surface glycoconjugates in other parasitic protozoa. Electron micrographs show variations in the surface coats from the three Blastocystis isolates. These differences could be associated with the differences in the pathogenic potential of Blastocystis subtypes. Apart from the surface coat, a plasma membrane-associated surface antigen has been described for Blastocystis ST7 and is associated with programmed cell death features of the parasite

    Microbial hara-kiri: Exploiting lysosomal cell death in malaria parasites

    No full text
    The antimalarial drug chloroquine (CQ) has been sidelined in the fight against falciparum malaria due to wide-spread CQ resistance. Replacement drugs like sulfadoxine, pyrimethamine and mefloquine have also since been surpassed with the evolution of multi-drug resistant parasites. Even the currently recommended artemisinin-based combination therapies show signs of compromise due to the recent spread of artemisinin delayed-clearance parasites. Though there have been promising breakthroughs in the pursuit of new effective antimalarials, the development and strategic deployment of such novel chemical entities takes time. We therefore argue that there is a crucial need to re-examine the usefulness of ‘outdated’ drugs like chloroquine, and explore if they might be effective alternative therapies in the interim. We suggest that a novel parasite cell death (pCD) pathway may be exploited through the reformulation of CQ to address this need

    Seeing the Whole Elephant: Imaging Flow Cytometry Reveals Extensive Morphological Diversity within <i>Blastocystis</i> Isolates

    No full text
    <div><p><i>Blastocystis</i> is a common protist isolated in humans and many animals. The parasite is a species complex composed of 19 subtypes, 9 of which have been found in humans. There are biological and molecular differences between <i>Blastocystis</i> subtypes although microscopy alone is unable to distinguish between these subtypes. <i>Blastocystis</i> isolates also display various morphological forms. Several of these forms, however, have not been properly evaluated on whether or not these play significant functions in the organism's biology. In this study, we used imaging flow cytometry to analyze morphological features of <i>Blastocystis</i> isolates representing 3 subtypes (ST1, ST4 and ST7). We also employed fluorescence dyes to discover new cellular features. The profiles from each of the subtypes exhibit considerable differences with the others in terms of shape, size and granularity. We confirmed that the classical vacuolar form comprises the majority in all three subtypes. We have also evaluated other morphotypes on whether these represent distinct life stages in the parasite. Irregularly-shaped cells were identified but all of them were found to be dying cells in one isolate. Granular forms were present as a continuum in both viable and non-viable populations, with non-viable forms displaying higher granularity. By analyzing the images, rare morphotypes such as multinucleated cells could be easily observed and quantified. These cells had low granularity and lower DNA content. Small structures containing nucleic acid were also identified. We discuss the possible biological implications of these unusual forms.</p></div

    Viable <i>Blastocystis</i> size profiles indicated by cell diameter range and average diameter.

    No full text
    <p>Viable <i>Blastocystis</i> size profiles indicated by cell diameter range and average diameter.</p

    Initial gating strategy to analyze <i>Blastocystis</i> cells.

    No full text
    <p>Cells were gated for focused cells using brightfield channel, then selection of single cells using aspect ratio and area units, and finally to classify viable and non-viable cells using PI-staining characteristics. The above graphs shows the analysis for <i>Blastocystis</i> ST1-NUH9 isolate (A). Subsequent analyses made use of features arising from Hoechst and CFSE staining characteristics as well as features from brightfield and side-scatter channels (B).</p
    corecore