109 research outputs found
Effects of Climate and Atmospheric Nitrogen Deposition on Early to Mid-Term Stage Litter Decomposition Across Biomes
Litter decomposition is a key process for carbon and nutrient cycling in terrestrial ecosystems and is mainly controlled by environmental conditions, substrate quantity and quality as well as microbial community abundance and composition. In particular, the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition and its temporal dynamics are of significant importance, since their effects might change over the course of the decomposition process. Within the TeaComposition initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We assessed how macroclimate and atmospheric inorganic N deposition under current and predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3 and 12 months. Our study shows that the early to mid-term mass loss at the global scale was affected predominantly by litter quality (explaining 73% and 62% of the total variance after 3 and 12 months, respectively) followed by climate and N deposition. The effects of climate were not litter-specific and became increasingly significant as decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after 12 months of incubation. The effect of N deposition was litter-specific, and significant only for 12-month decomposition of Rooibos tea at the global scale. However, in the temperate biome where atmospheric N deposition rates are relatively high, the 12-month mass loss of Green and Rooibos teas decreased significantly with increasing N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected changes in macroclimate and N deposition at the global scale by the end of this century are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1-3.5% and of the more stable substrates by 3.8-10.6%, relative to current mass loss. In contrast, expected changes in atmospheric N deposition will decrease the mid-term mass loss of high-quality litter by 1.4-2.2% and that of low-quality litter by 0.9-1.5% in the temperate biome. Our results suggest that projected increases in N deposition may have the capacity to dampen the climate-driven increases in litter decomposition depending on the biome and decomposition stage of substrate.Peer reviewe
The TeaComposition Initiative: Unleashing the power of international collaboration to understand litter decomposition
Collected harmonized data on global litter decomposition are of great relevance for scientists, policymakers, and for education of the next generation of researchers and environmental managers. Here we describe the TeaComposition initiative, a global and open research collaborative network to study organic matter decomposition in a standardized way allowing comparison of decomposition rate and carbon turnover across global and regional gradients of ecosystems, climate, soils etc. The TeaComposition initiative today involves 570 terrestrial and 300 aquatic ecosystems from nine biomes worldwide. Further, we describe how to get involved in the TeaComposition initiative by (a) implementing the standard protocol within your study site, (b) joining task forces in data analyses, syntheses and modelling efforts, (c) using collected data and samples for further analyses through joint projects, (d) using collected data for graduate seminars, and (e) strengthening synergies between biogeochemical research and a wide range of stakeholders. These collaborative efforts within/emerging from the TeaComposition initiative, thereby, will leverage our understanding on litter decomposition at the global scale and strengthen global collaborations essential for addressing grand scientific challenges in a rapidly changing world.This work was performed within the TeaComposition and TeaComposition H2O initiatives, carried by 290 institutions worldwide. We thank to UNILEVER for sponsoring the Lipton tea bags. The initiative is supported by the following grants: ILTER Initiative Grants, ClimMani Short-Term Scientific Missions Grants, INTERACT Remote Transnational Access and an Alfred Deakin Postdoctoral Research Fellowship. Nico Eisenhauer gratefully acknowledges the support of iDiv funded by the German Research Foundation (DFG– FZT 118, 202548816). ST-T was supported by the ARC DE210101029 and Deakin University’s ADPR Fellowship. Fernando T. Maestre acknowledges support from the European Research Council (ERC Grant agreement 647038 [BIODESERT]) and Generalitat Valenciana (CIDEGENT/2018/041)
- …