8 research outputs found

    The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description

    Get PDF
    On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.In France was provided by the Centre National d'Etudes Spatiales (CNES). Human resources were provided in part by the Centre National de la Recherche Scientifique (CNRS) and universities. Funding was provided in the US by NASA's Mars Exploration Program. Some funding of data analyses at Los Alamos National Laboratory (LANL) was provided by laboratory-directed research and development funds

    Neuropsychosocial profiles of current and future adolescent alcohol misusers

    Get PDF
    A comprehensive account of the causes of alcohol misuse must accommodate individual differences in biology, psychology and environment, and must disentangle cause and effect. Animal models1 can demonstrate the effects of neurotoxic substances; however, they provide limited insight into the psycho-social and higher cognitive factors involved in the initiation of substance use and progression to misuse. One can search for pre-existing risk factors by testing for endophenotypic biomarkers2 in non-using relatives; however, these relatives may have personality or neural resilience factors that protect them from developing dependence3. A longitudinal study has potential to identify predictors of adolescent substance misuse, particularly if it can incorporate a wide range of potential causal factors, both proximal and distal, and their influence on numerous social, psychological and biological mechanisms4. Here we apply machine learning to a wide range of data from a large sample of adolescents (n = 692) to generate models of current and future adolescent alcohol misuse that incorporate brain structure and function, individual personality and cognitive differences, environmental factors (including gestational cigarette and alcohol exposure), life experiences, and candidate genes. These models were accurate and generalized to novel data, and point to life experiences, neurobiological differences and personality as important antecedents of binge drinking. By identifying the vulnerability factors underlying individual differences in alcohol misuse, these models shed light on the aetiology of alcohol misuse and suggest targets for prevention

    Sexual risk behaviour, marriage and ART : a study of HIV-positive people in Papua New Guinea

    Get PDF
    Background: The prevention of intimate partner transmission of HIV remains an important component of comprehensive HIV prevention strategies. In this paper we examine the sexual practices of people living with HIV on antiretroviral therapy (ART) in Papua New Guinea (PNG). Method: In 2008, a total of 374 HIV-positive people over the age of 16 and on ART for more than two weeks were recruited using a non-probability, convenience sampling methodology. This accounted for around 18% of adults on ART at the time. A further 36 people participated in semi-structured interviews. All interviews were thematically analysed using NVivo qualitative data analysis software. Results: Less than forty per cent (38%) of participants reported having had sexual intercourse in the six months prior to the survey. Marital status was by far the most important factor in determining sexual activity, but consistent condom use during vaginal intercourse with a regular partner was low. Only 46% reported consistent condom use during vaginal intercourse with a regular partner in the last six months, despite 77% of all participants reporting that consistent condom use can prevent HIV transmission. Consistent condom use was lowest amongst married couples and those in seroconcordant relationships. The vast majority (91.8%) of all participants with a regular heterosexual partner had disclosed their status to their partner. Qualitative data reinforced low rates of sexual activity and provided important insights into sexual abstinence and condom use. Conclusions: Considering the importance of intimate partner transmission of HIV, these results on the sexual practices of people with HIV on ART in PNG suggest that one-dimensional HIV prevention messages focussing solely on condom use fail to account for the current practices and needs of HIV-positive people, especially those who are married and know their partners' HIV status.12 page(s

    Understanding the Chemistry of the Rocks at Jezero crater, Mars, through the Combined Use of SuperCam Spectroscopic and Optical Techniques

    No full text
    International audienceThe SuperCam instrument onboard Perseverance rover has remote imaging (RMI), VISIR, LIBS, Raman and Time-Resolved Luminescence (TRL) capabilities. RMI images of the rocks at the Octavia Butler landing site have revealed important granular texture diversities. VISIR raster point observations have revealed important differences in the 2.10-2.50 ”m infrared range (metal-hydroxides); many include water features at 1.40±0.04 and 1.92±0.02 ”m [1]. LIBS observations on the same points analyzed by VISIR revealed important differences in the concentrations of major elements, suggesting mineral grain sizes larger than the laser beam (300-500 ”m). LIBS and VISIR show coherent results in some rock surfaces that are consistent with an oxy-hydroxide (e.g., ferrihydrite) [1]. LIBS elemental compositions are consistent with pyroxenes, feldspars, and more often feldspar-like glass, often enriched in silica. Olivine compositions [1, 2] have been observed so far in LIBS data (up to Sol 140) exclusively in rounded regolith pebbles. They have not yet been observed in the rocks themselves, which are MgO-poor compared to regolith and are consistent with FeO bearing pyroxenes (e.g., hedenbergite, ferrosilite). A 3x3 LIBS and VISIR raster (9x9 mm) acquired on a low-standing rock on sol 90 exemplifies these finding. A dark L-shaped filled void sampled by points 1 and 2 with possible ferrihydrite (H seen in LIBS and VISIR spectra). Point 5 contains abundant silica and alkali elements but is Al-depleted relative to feldspars, consistent with dacitic glass composition. Point 7 has TiO2 content consistent with ilmenite. Comparisons to (igneous) Martian meteorites are potentially useful, e.g. [3], to explain the presence of several minerals, although most Martian meteorites are olivine-rich, e.g., more mafic than the rocks at the landing site. In summary, the bedrock at Octavia Butler landing site can be interpreted as showing evidence for relatively coarse-grained weathered pyroxenes, iron and titanium oxides and feldspars, while the local soil contains pebbles from a different source (richer in MgO) incorporating olivine grains. References: [1] Mandon et al. 2021 Fall AGU, New Orleans, LA, 13-17 Dec. ; [2] Beyssac et al. 2021 Fall AGU, New Orleans, LA, 13-17 Dec. ; [3] Garcia-Florentino et al.(2021), Talanta, 224, 121863

    Understanding the Chemistry of the Rocks at Jezero crater, Mars, through the Combined Use of SuperCam Spectroscopic and Optical Techniques

    No full text
    International audienceThe SuperCam instrument onboard Perseverance rover has remote imaging (RMI), VISIR, LIBS, Raman and Time-Resolved Luminescence (TRL) capabilities. RMI images of the rocks at the Octavia Butler landing site have revealed important granular texture diversities. VISIR raster point observations have revealed important differences in the 2.10-2.50 ”m infrared range (metal-hydroxides); many include water features at 1.40±0.04 and 1.92±0.02 ”m [1]. LIBS observations on the same points analyzed by VISIR revealed important differences in the concentrations of major elements, suggesting mineral grain sizes larger than the laser beam (300-500 ”m). LIBS and VISIR show coherent results in some rock surfaces that are consistent with an oxy-hydroxide (e.g., ferrihydrite) [1]. LIBS elemental compositions are consistent with pyroxenes, feldspars, and more often feldspar-like glass, often enriched in silica. Olivine compositions [1, 2] have been observed so far in LIBS data (up to Sol 140) exclusively in rounded regolith pebbles. They have not yet been observed in the rocks themselves, which are MgO-poor compared to regolith and are consistent with FeO bearing pyroxenes (e.g., hedenbergite, ferrosilite). A 3x3 LIBS and VISIR raster (9x9 mm) acquired on a low-standing rock on sol 90 exemplifies these finding. A dark L-shaped filled void sampled by points 1 and 2 with possible ferrihydrite (H seen in LIBS and VISIR spectra). Point 5 contains abundant silica and alkali elements but is Al-depleted relative to feldspars, consistent with dacitic glass composition. Point 7 has TiO2 content consistent with ilmenite. Comparisons to (igneous) Martian meteorites are potentially useful, e.g. [3], to explain the presence of several minerals, although most Martian meteorites are olivine-rich, e.g., more mafic than the rocks at the landing site. In summary, the bedrock at Octavia Butler landing site can be interpreted as showing evidence for relatively coarse-grained weathered pyroxenes, iron and titanium oxides and feldspars, while the local soil contains pebbles from a different source (richer in MgO) incorporating olivine grains. References: [1] Mandon et al. 2021 Fall AGU, New Orleans, LA, 13-17 Dec. ; [2] Beyssac et al. 2021 Fall AGU, New Orleans, LA, 13-17 Dec. ; [3] Garcia-Florentino et al.(2021), Talanta, 224, 121863

    Immune response to intrathecal enzyme replacement therapy in mucopolysaccharidosis I patients

    No full text
    BackgroundIntrathecal (IT) enzyme replacement therapy with recombinant human α-L-iduronidase (rhIDU) has been studied to treat glycosaminoglycan storage in the central nervous system of mucopolysaccharidosis (MPS) I dogs and is currently being studied in MPS I patients.MethodsWe studied the immune response to IT rhIDU in MPS I subjects with spinal cord compression who had been previously treated with intravenous rhIDU. We measured the concentrations of specific antibodies and cytokines in serum and cerebrospinal fluid (CSF) collected before monthly IT rhIDU infusions and compared the serologic findings with clinical adverse event (AE) reports to establish temporal correlations with clinical symptoms.ResultsFive MPS I subjects participating in IT rhIDU trials were studied. One subject with symptomatic spinal cord compression had evidence of an inflammatory response with CSF leukocytosis, elevated interleukin-5, and elevated immunoglobulin G. This subject also complained of lower back pain and buttock paresthesias temporally correlated with serologic abnormalities. Clinical symptoms were managed with oral medication, and serologic abnormalities were resolved, although this subject withdrew from the trial to have spinal decompressive surgery.ConclusionIT rhIDU was generally well tolerated in the subjects studied, although one subject had moderate to severe clinical symptoms and serologic abnormalities consistent with an immune response

    The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests

    Get PDF
    TheSuperCaminstrumentsuiteprovidestheMars2020rover,Perseverance,with a number of versatile remote-sensing techniques that can be used at long distance as well as within the robotic-arm workspace. These include laser-induced breakdown spectroscopy (LIBS), remote time-resolved Raman and luminescence spectroscopies, and visible and in- frared (VISIR; separately referred to as VIS and IR) reflectance spectroscopy. A remote micro-imager (RMI) provides high-resolution color context imaging, and a microphone can be used as a stand-alone tool for environmental studies or to determine physical properties of rocks and soils from shock waves of laser-produced plasmas. SuperCam is built in three parts: The mast unit (MU), consisting of the laser, telescope, RMI, IR spectrometer, and associated electronics, is described in a companion paper. The on-board calibration targets are described in another companion paper. Here we describe SuperCam’s body unit (BU) and testing of the integrated instrument.The BU, mounted inside the rover body, receives light from the MU via a 5.8 m opti- cal fiber. The light is split into three wavelength bands by a demultiplexer, and is routed via fiber bundles to three optical spectrometers, two of which (UV and violet; 245–340 and 385–465 nm) are crossed Czerny-Turner reflection spectrometers, nearly identical to their counterparts on ChemCam. The third is a high-efficiency transmission spectrometer contain- ing an optical intensifier capable of gating exposures to 100 ns or longer, with variable delay times relative to the laser pulse. This spectrometer covers 535–853 nm (105–7070 cm−1 Ra- man shift relative to the 532 nm green laser beam) with 12 cm−1 full-width at half-maximum peak resolution in the Raman fingerprint region. The BU electronics boards interface with the rover and control the instrument, returning data to the rover. Thermal systems maintain a warm temperature during cruise to Mars to avoid contamination on the optics, and cool the detectors during operations on Mars.Results obtained with the integrated instrument demonstrate its capabilities for LIBS, for which a library of 332 standards was developed. Examples of Raman and VISIR spec- troscopy are shown, demonstrating clear mineral identification with both techniques. Lumi- nescence spectra demonstrate the utility of having both spectral and temporal dimensions. Finally, RMI and microphone tests on the rover demonstrate the capabilities of these sub- systems as well
    corecore