249 research outputs found

    Formation of a Long-Lived P Ba-State in Plant Pheophytin-Exchanged Reaction Centers of Rhodobacter sphaeroides R26 at Low Temperature

    Get PDF
    Femtosecond transient absorption spectroscopy in the range of 500-1040 nm was used to study electron transfer at 5 K in reaction centers of Rhodobacter sphaeroides R26 in which the bacteriopheophytins (BPhe) were replaced by plant pheophytin a (Phe). Primary charge separation took place with a time constant of 1.6 ps, similar to that found in native RCs. Spectral changes around 1020 nm indicated the formation of reduced bacteriochlorophyll (BChl) with the same time constant, and its subsequent decay in 620 ps. This observation identifies the accessory BChl as the primary electron acceptor. No evidence was found for electron transfer to Phe, indicating that electron transfer from B(A

    Dehairing Australian alpaca fibres with a cashmere dehairing machine

    Full text link
    Many classes of alpaca fibres contain a certain amount of coarse fibres, which are strong and stiff, and cause discomfort to the end users of the alpaca fibre products. It is therefore desirable to separate the coarse fibres from the fine alpaca fibres. This paper reports trial results on alpaca dehairing using a cashmere dehairing machine. The diameters of alpaca fleece, dehaired alpaca fibres and removed alpaca fibres were analysed, and the fibre lengths before and after dehairing have been compared. The results indicate that it is feasible to dehair alpaca fibres using a cashmere dehairing facility. The dehaired alpaca fibres are cleaner, bulkier and softer, with around 1.5 &mu;m reduction in average fibre diameter, but the dehairing process shortens the dehaired fibre length considerably. The dehairing effectiveness of coarse fibre removal using the cashmere dehairing technology has also been discussed in this paper. <br /

    Polarization-controlled optimal scatter suppression in transient absorption spectroscopy

    Get PDF
    Ultrafast transient absorption spectroscopy is a powerful technique to study fast photo-induced processes, such as electron, proton and energy transfer, isomerization and molecular dynamics, in a diverse range of samples, including solid state materials and proteins. Many such experiments suffer from signal distortion by scattered excitation light, in particular close to the excitation (pump) frequency. Scattered light can be effectively suppressed by a polarizer oriented perpendicular to the excitation polarization and positioned behind the sample in the optical path of the probe beam. However, this introduces anisotropic polarization contributions into the recorded signal. We present an approach based on setting specific polarizations of the pump and probe pulses, combined with a polarizer behind the sample. Together, this controls the signal-to-scatter ratio (SSR), while maintaining isotropic signal. We present SSR for the full range of polarizations and analytically derive the optimal configuration at angles of 40.5° between probe and pump and of 66.9° between polarizer and pump polarizations. This improves SSR by 33 52 ≈. (or 3 compared to polarizer parallel to probe). The calculations are validated by transient absorption experiments on the common fluorescent dye Rhodamine B. This approach provides a simple method to considerably improve the SSR in transient absorption spectroscopy

    Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems

    Get PDF
    The photophysical and photochemical reactions, after light absorption by a photosynthetic pigment–protein complex, are among the fastest events in biology, taking place on timescales ranging from tens of femtoseconds to a few nanoseconds. The advent of ultrafast laser systems that produce pulses with femtosecond duration opened up a new area of research and enabled investigation of these photophysical and photochemical reactions in real time. Here, we provide a basic description of the ultrafast transient absorption technique, the laser and wavelength-conversion equipment, the transient absorption setup, and the collection of transient absorption data. Recent applications of ultrafast transient absorption spectroscopy on systems with increasing degree of complexity, from biomimetic light-harvesting systems to natural light-harvesting antennas, are presented. In particular, we will discuss, in this educational review, how a molecular understanding of the light-harvesting and photoprotective functions of carotenoids in photosynthesis is accomplished through the application of ultrafast transient absorption spectroscopy

    Excitons in a Photosynthetic Light-Harvesting System: A Combined Molecular Dynamics/Quantum Chemistry and Polaron Model Study

    Get PDF
    The dynamics of pigment-pigment and pigment-protein interactions in light-harvesting complexes is studied with a novel approach which combines molecular dynamics (MD) simulations with quantum chemistry (QC) calculations. The MD simulations of an LH-II complex, solvated and embedded in a lipid bilayer at physiological conditions (with total system size of 87,055 atoms) revealed a pathway of a water molecule into the B800 binding site, as well as increased dimerization within the B850 BChl ring, as compared to the dimerization found for the crystal structure. The fluctuations of pigment (B850 BChl) excitation energies, as a function of time, were determined via ab initio QC calculations based on the geometries that emerged from the MD simulations. From the results of these calculations we constructed a time-dependent Hamiltonian of the B850 exciton system from which we determined the linear absorption spectrum. Finally, a polaron model is introduced to describe quantum mechanically both the excitonic and vibrational (phonon) degrees of freedom. The exciton-phonon coupling that enters into the polaron model, and the corresponding phonon spectral function are derived from the MD/QC simulations. It is demonstrated that, in the framework of the polaron model, the absorption spectrum of the B850 excitons can be calculated from the autocorrelation function of the excitation energies of individual BChls, which is readily available from the combined MD/QC simulations. The obtained result is in good agreement with the experimentally measured absorption spectrum.Comment: REVTeX3.1, 23 pages, 13 (EPS) figures included. A high quality PDF file of the paper is available at http://www.ks.uiuc.edu/Publications/Papers/PDF/DAMJ2001/DAMJ2001.pd

    BLUF Domain Function Does Not Require a Metastable Radical Intermediate State

    Get PDF
    BLUF (blue light using flavin) domain proteins are an important family of blue light-sensing proteins which control a wide variety of functions in cells. The primary light-activated step in the BLUF domain is not yet established. A number of experimental and theoretical studies points to a role for photoinduced electron transfer (PET) between a highly conserved tyrosine and the flavin chromophore to form a radical intermediate state. Here we investigate the role of PET in three different BLUF proteins, using ultrafast broadband transient infrared spectroscopy. We characterize and identify infrared active marker modes for excited and ground state species and use them to record photochemical dynamics in the proteins. We also generate mutants which unambiguously show PET and, through isotope labeling of the protein and the chromophore, are able to assign modes characteristic of both flavin and protein radical states. We find that these radical intermediates are not observed in two of the three BLUF domains studied, casting doubt on the importance of the formation of a population of radical intermediates in the BLUF photocycle. Further, unnatural amino acid mutagenesis is used to replace the conserved tyrosine with fluorotyrosines, thus modifying the driving force for the proposed electron transfer reaction; the rate changes observed are also not consistent with a PET mechanism. Thus, while intermediates of PET reactions can be observed in BLUF proteins they are not correlated with photoactivity, suggesting that radical intermediates are not central to their operation. Alternative nonradical pathways including a keto–enol tautomerization induced by electronic excitation of the flavin ring are considered

    Assessment of Three Mitochondrial Genes (16S, Cytb, CO1) for Identifying Species in the Praomyini Tribe (Rodentia: Muridae)

    Get PDF
    The Praomyini tribe is one of the most diverse and abundant groups of Old World rodents. Several species are known to be involved in crop damage and in the epidemiology of several human and cattle diseases. Due to the existence of sibling species their identification is often problematic. Thus an easy, fast and accurate species identification tool is needed for non-systematicians to correctly identify Praomyini species. In this study we compare the usefulness of three genes (16S, Cytb, CO1) for identifying species of this tribe. A total of 426 specimens representing 40 species (sampled across their geographical range) were sequenced for the three genes. Nearly all of the species included in our study are monophyletic in the neighbour joining trees. The degree of intra-specific variability tends to be lower than the divergence between species, but no barcoding gap is detected. The success rate of the statistical methods of species identification is excellent (up to 99% or 100% for statistical supervised classification methods as the k-Nearest Neighbour or Random Forest). The 16S gene is 2.5 less variable than the Cytb and CO1 genes. As a result its discriminatory power is smaller. To sum up, our results suggest that using DNA markers for identifying species in the Praomyini tribe is a largely valid approach, and that the CO1 and Cytb genes are better DNA markers than the 16S gene. Our results confirm the usefulness of statistical methods such as the Random Forest and the 1-NN methods to assign a sequence to a species, even when the number of species is relatively large. Based on our NJ trees and the distribution of all intraspecific and interspecific pairwise nucleotide distances, we highlight the presence of several potentially new species within the Praomyini tribe that should be subject to corroboration assessments

    Nanoscale Confinement and Fluorescence Effects of Bacterial Light Harvesting Complex LH2 in Mesoporous Silicas

    Get PDF
    Many key chemical and biochemical reactions, particularly in living cells, take place in confined space at the mesoscopic scale. Toward understanding of physicochemical nature of biomacromolecules confined in nanoscale space, in this work we have elucidated fluorescence effects of a light harvesting complex LH2 in nanoscale chemical environments. Mesoporous silicas (SBA-15 family) with different shapes and pore sizes were synthesized and used to create nanoscale biomimetic environments for molecular confinement of LH2. A combination of UV-vis absorption, wide-field fluorescence microscopy, and in situ ellipsometry supports that the LH2 complexes are located inside the silica nanopores. Systematic fluorescence effects were observed and depend on degree of space confinement. In particular, the temperature dependence of the steady-state fluorescence spectra was analyzed in detail using condensed matter band shape theories. Systematic electronic-vibrational coupling differences in the LH2 transitions between the free and confined states are found, most likely responsible for the fluorescence effects experimentally observed
    corecore