305 research outputs found

    Fast switching of magnetic fields in a magneto-optic trap

    No full text
    Magneto-optic traps which employ current windings to generate pulsed magnetic fields require rapid switch-off times for many applications. Practical difficulties in attaining rapid switch-off of the magnetic field, including the generation of induced currents, are addressed. Several methods for minimizing the switch-off time are presented which do not require complex feedback mechanisms involving direct measurement of the magnetic field

    Protocols for calibrating multibeam sonar

    Get PDF
    Development of protocols for calibrating multibeam sonar by means of the standard-target method is documented. Particular systems used in the development work included three that provide the water-column signals, namely the SIMRAD SM2000/90- and 200-kHz sonars and RESON SeaBat 8101 sonar, with operating frequency of 240 kHz. Two facilities were instrumented specifically for the work: a sea well at the Woods Hole Oceanographic Institution and a large, indoor freshwater tank at the University of New Hampshire. Methods for measuring the transfer characteristics of each sonar, with transducers attached, are described and illustrated with measurement results. The principal results, however, are the protocols themselves. These are elaborated for positioning the target, choosing the receiver gain function, quantifying the system stability, mapping the directionality in the plane of the receiving array and in the plane normal to the central axis, measuring the directionality of individual beams, and measuring the nearfield response. General preparations for calibrating multibeam sonars and a method for measuring the receiver response electronically are outlined. Advantages of multibeam sonar calibration and outstanding problems, such as that of validation of the performance of multibeam sonars as configured for use, are mentioned

    Sediment identification using free fall penetrometer acceleration-time histories

    Get PDF
    Abstract Knowledge of physical properties of near-surface sediments is an important requirement for many studies of the seafloor. Dynamic or Free Fall Penetrometers (FFP), instrumented with accelerometers, are widely used to assess the mechanical properties of the sediment by deriving penetration resistance from the deceleration response of the probe as it impacts and embeds the seabed. Other field investigations, a priori knowledge or a very basic description of the type of sediment (such as a description of the sediment as soft, medium or hard) derived from studying the deceleration response (accelerometer-time histories) are used for sediment identification prior to the application of an appropriate strength determination model. In many cases this information is site-specific and in others the penetration resistance is overestimated due to the dilatory effects observed in sediment with an undetected grain fraction. In this study variables affecting a dynamic penetrometer-sediment interaction system are identified. Using data from field investigations and literature we found a relationship among five variables: peak acceleration, embedment depth, total embedment time, velocity of impact and grain size. This is used to formulate a sediment identification model. The model accounts for variables that may vary widely within one deployment and it can be applied to other FFPs with different physical characteristics (such as a different mass or size). This may lead to the increased use of FFP as a deployment tool for rapid in situ characterization of the seafloor

    BVRI Light Curves for 29 Type Ia Supernovae

    Get PDF
    BVRI light curves are presented for 27 Type Ia supernovae discovered during the course of the Calan/Tololo Survey and for two other SNe Ia observed during the same period. Estimates of the maximum light magnitudes in the B, V, and I bands and the initial decline rate parameter m15(B) are also given.Comment: 17 pages, figures and tables are not included (contact first author if needed), to appear in the Astronomical Journa

    Protocols for calibrating multibeam sonar

    Get PDF
    Author Posting. © Acoustical Society of America, 2005. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 117 (2005): 2013-2027, doi:10.1121/1.1869073.Development of protocols for calibrating multibeam sonar by means of the standard-target method is documented. Particular systems used in the development work included three that provide the water-column signals, namely the SIMRAD SM2000/90- and 200-kHz sonars and RESON SeaBat 8101 sonar, with operating frequency of 240 kHz. Two facilities were instrumented specifically for the work: a sea well at the Woods Hole Oceanographic Institution and a large, indoor freshwater tank at the University of New Hampshire. Methods for measuring the transfer characteristics of each sonar, with transducers attached, are described and illustrated with measurement results. The principal results, however, are the protocols themselves. These are elaborated for positioning the target, choosing the receiver gain function, quantifying the system stability, mapping the directionality in the plane of the receiving array and in the plane normal to the central axis, measuring the directionality of individual beams, and measuring the nearfield response. General preparations for calibrating multibeam sonars and a method for measuring the receiver response electronically are outlined. Advantages of multibeam sonar calibration and outstanding problems, such as that of validation of the performance of multibeam sonars as configured for use, are mentioned.Support by the National Science Foundation through Award No. OCE-0002664, NOAA through Grant No. NA97OG0241, and the Cooperative Institute for Climate and Ocean Research (CICOR) through NOAA Contract No. NA17RJ1223 is acknowledged

    Mechanics of the right whale mandible : full scale testing and finite element analysis

    Get PDF
    Author Posting. © Elsevier B.V., 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Experimental Marine Biology and Ecology 374 (2009): 93-103, doi:10.1016/j.jembe.2009.03.012.In an effort to better understand the mechanics of ship-whale collision and to reduce the associated mortality of the critically endangered North Atlantic right whale, a comprehensive biomechanical study has been conducted by the Woods Hole Oceanographic Institution and the University of New Hampshire. The goal of the study is to develop a numerical modeling tool to predict the forces and stresses during impact and thereby the resulting mortality risk to whales from ship strikes. Based on post-mortem examinations, jaw fracture was chosen as a fatal endpoint for the whales hit by a vessel. In this paper we investigate the overall mechanical behavior of a right whale mandible under transverse loading and develop a finite element analysis model of the bone. The equivalent elastic modulus of the cortical component of right whale mandible is found by comparing full-scale bending tests with the results of numerical modeling. The finite element model of the mandible can be used in conjunction with a vessel-whale collision event model to predict bone fracture for various ship strike scenarios.Funding for this work was provided by the National Science Foundation (Graduate Research Fellowship Program, Campbell-Malone), the National Oceanic and Atmospheric Administration (Right Whale Grants Program, award number NA04NMF4720402), and the Woods Hole Oceanographic Institution Ocean Life Institute

    Testing cosmological variability of the proton-to-electron mass ratio using the spectrum of PKS 0528-250

    Get PDF
    Multidimensional cosmologies allow for variations of fundamental physical constants over the course of cosmological evolution, and different versions of the theories predict different time dependences. In particular, such variations could manifest themselves as changes of the proton-to-electron mass ratio \mu=m_p/m_e over the period of ~ 10^{10} years since the moment of formation of high-redshift QSO spectra. Here we analyze a new, high-resolution spectrum of the z=2.81080 molecular hydrogen absorption system toward the quasar PKS 0528-250 to derive a new observational constraint to the time-averaged variation rate of the proton-to-electron mass ratio. We find |\dot{\mu} / \mu| < 1.5 \times 10^{-14}/year, which is much tighter than previously measured limits.Comment: 9 pages, 2 tables, 3 figures, LaTeX (aas2pp4.sty and epsf.sty included). To be published in Ap

    Dynamics of dual film formation in boundary lubrication of steels part I. Functional nature and mechanical properties

    Full text link
    Effective "breaking-in" of lubricated steel surfaces has been found to be due primarily to the rate of growth of "protective" films of oxides and compounds derived from the lubricant. The protection afforded by the films is strongly dependent on lubricant chemistry, steel composition, original surface roughness and the load/speed sequence or history in the early stages of sliding. Given the great number of variables involved it is not possible to follow more than a few of the chemical changes on surfaces using the electron, ion and X-ray column analytical instruments at the end of experiments. Ellipsometry was therefore used to monitor the formation and loss of dual protective films in real time, and detailed chemical analysis was done at various stages to calibrate the ellipsometer. This work is reported in three interlinking parts: I, functional nature and mechanical properties; II, chemical analyses; III, real-time monitoring with ellipsometry.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29172/1/0000218.pd

    Photometric and Spectroscopic Observations of SN 1990E in NGC 1035: Observational Constraints for Models of Type II Supernovae

    Full text link
    We present 126 photometric and 30 spectral observation of SN 1990E spanning from 12 days before B maximum to 600 days past discovery. These observations show that SN 1990E was of type II-P, displaying hydrogen in its spectrum, and the characteristic plateau in its light curve. SN 1990E is one of the few SNe II which has been well observed before maximum light, and we present evidence that this SN was discovered very soon after its explosion. In the earliest spectra we identify, for the first time, several N II lines. We present a new technique for measuring extinction to SNe II based on the evolution of absorption lines, and use this method to estimate the extinction to SN 1990E, Av=1.5+/-0.3 mag. From our photometric data we have constructed a bolometric light curve for SN 1990E and show that, even at the earliest times, the bolometric luminosity was falling rapidly. We use the late-time bolometric light curve to show that SN 1990E trapped a majority of the gamma rays produced by the radioactive decay of 56Co, and estimate that SN 1990E ejected 0.073 Mo of 56Ni, an amount virtually identical to that of SN 1987A. [excerpt

    s-Process Abundances in Planetary Nebulae

    Get PDF
    The s-process should occur in all but the lower mass progenitor stars of planetary nebulae, and this should be reflected in the chemical composition of the gas which is expelled to create the current planetary nebula shell. Weak forbidden emission lines are expected from several s-process elements in these shells, and have been searched for and in some cases detected in previous investigations. Here we extend these studies by combining very high signal-to-noise echelle spectra of a sample of PNe with a critical analysis of the identification of the emission lines of Z>30 ions. Emission lines of Br, Kr, Xe, Rb, Ba, and Pb are detected with a reasonable degree of certainty in at least some of the objects studied here, and we also tentatively identify lines from Te and I, each in one object. The strengths of these lines indicate enhancement of s-process elements in the central star progenitors, and we determine the abundances of Br, Kr, and Xe, elements for which atomic data relevant for abundance determination have recently become available. As representative elements of the ``light'' and ``heavy'' s-process peaks Kr and Xe exhibit similar enhancements over solar values, suggesting that PNe progenitors experience substantial neutron exposure.Comment: 56 Pages, 6 figures, accepted for publication in ApJ This version corrects missing captions in Figure 1-3 and minor typo
    • 

    corecore