135 research outputs found
Microarray Analysis of Bacterial Gene Expression: Towards the Regulome
Microarray technology allows co-regulated genes to be identified. In order to identify genes that are controlled by specific regulators, gene expression can be compared
in mutant and wild-type bacteria. However, there are a number of pitfalls with this
approach; in particular, the regulator may not be active under the conditions in which
the wild-type strain is cultured. Once co-regulated genes have been identified, proteinbinding
motifs can be identified. By combining these data with a map of promoters,
or operons (the operome), the regulatory networks in the cell (the regulome) can start
to be built up
Spatiotemporal complexity of a ratio-dependent predator-prey system
In this paper, we investigate the emergence of a ratio-dependent
predator-prey system with Michaelis-Menten-type functional response and
reaction-diffusion. We derive the conditions for Hopf, Turing and Wave
bifurcation on a spatial domain. Furthermore, we present a theoretical analysis
of evolutionary processes that involves organisms distribution and their
interaction of spatially distributed population with local diffusion. The
results of numerical simulations reveal that the typical dynamics of population
density variation is the formation of isolated groups, i.e., stripelike or
spotted or coexistence of both. Our study shows that the spatially extended
model has not only more complex dynamic patterns in the space, but also chaos
and spiral waves. It may help us better understand the dynamics of an aquatic
community in a real marine environment.Comment: 6pages, revtex
Global analyses of TetR family transcriptional regulators in mycobacteria indicates conservation across species and diversity in regulated functions
BACKGROUND: Mycobacteria inhabit diverse niches and display high metabolic versatility. They can colonise both humans and animals and are also able to survive in the environment. In order to succeed, response to environmental cues via transcriptional regulation is required. In this study we focused on the TetR family of transcriptional regulators (TFTRs) in mycobacteria. RESULTS: We used InterPro to classify the entire complement of transcriptional regulators in 10 mycobacterial species and these analyses showed that TFTRs are the most abundant family of regulators in all species. We identified those TFTRs that are conserved across all species analysed and those that are unique to the pathogens included in the analysis. We examined genomic contexts of 663 of the conserved TFTRs and observed that the majority of TFTRs are separated by 200 bp or less from divergently oriented genes. Analyses of divergent genes indicated that the TFTRs control diverse biochemical functions not limited to efflux pumps. TFTRs typically bind to palindromic motifs and we identified 11 highly significant novel motifs in the upstream regions of divergently oriented TFTRs. The C-terminal ligand binding domain from the TFTR complement in M. tuberculosis showed great diversity in amino acid sequence but with an overall architecture common to other TFTRs. CONCLUSION: This study suggests that mycobacteria depend on TFTRs for the transcriptional control of a number of metabolic functions yet the physiological role of the majority of these regulators remain unknown. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1696-9) contains supplementary material, which is available to authorized users
Re-sensitization of Mycobacterium smegmatis to Rifampicin Using CRISPR Interference Demonstrates Its Utility for the Study of Non-essential Drug Resistance Traits
© 2021 Faulkner, Cox, Goh, van Bohemen, Gibson, Liebster, Wren, Willcocks and Kendall. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). https://creativecommons.org/licenses/by/4.0/A greater understanding of the genes involved in antibiotic resistance in Mycobacterium tuberculosis (Mtb) is necessary for the design of improved therapies. Clustered regularly interspaced short palindromic repeat interference (CRISPRi) has been previously utilized in mycobacteria to identify novel drug targets by the demonstration of gene essentiality. The work presented here shows that it can also be usefully applied to the study of non-essential genes involved in antibiotic resistance. The expression of an ADP-ribosyltransferase (Arr) involved in rifampicin resistance in Mycobacterium smegmatis was silenced using CRISPRi and the impact on rifampicin susceptibility was measured. Gene silencing resulted in a decrease in the minimum inhibitory concentration (MIC) similar to that previously reported in an arr deletion mutant. There is contradictory evidence for the toxicity of Streptococcus pyogenes dCas9 (dCas9 Spy) in the literature. In this study the expression of dCas9 Spy in M. smegmatis showed no impact on viability. Silencing was achieved with concentrations of the aTc inducer lower than previously described and with shorter induction times. Finally, designing small guide RNAs (sgRNAs) that target transcription initiation, or the early stages of elongation had the most impact on rifampicin susceptibility. This study demonstrates that CRISPRi based gene silencing can be as impactful as gene deletion for the study of non-essential genes and further contributes to the knowledge on the design and induction of sgRNAs for CRISPRi. This approach can be applied to other non-essential antimicrobial resistance genes such as drug efflux pumps.Peer reviewe
Rapid construction of mycobacterial mutagenesis vectors using ligation-independent cloning
Targeted mutagenesis is one of the major tools for determining the function of a given gene and its involvement in bacterial pathogenesis. In mycobacteria, gene deletion is often accomplished by using allelic exchange techniques that commonly utilise a suicide delivery vector. We have adapted a widely-used suicide delivery vector (p1NIL) for cloning two flanking regions of a gene using ligation independent cloning (LIC). The pNILRB plasmid series produced allow a faster, more efficient and less laborious cloning procedure. In this paper we describe the making of pNILRB5, a modified version of p1NIL that contains two pairs of LIC sites flanking either a sacB or a lacZ gene. We demonstrate the success of this technique by generating 3 mycobacterial mutant strains. These vectors will contribute to more high-throughput methods of mutagenesis
Use of traditional knowledge by the United States Bureau of Ocean Energy Management to support resource management
Professionals who collect and use traditional knowledge to support resource management decisions often are preoccupied with concerns over how and if traditional knowledge should be integrated with science. To move beyond the integration dilemma, we treat traditional knowledge and science as distinct and complementary knowledge systems. We focus on applying traditional knowledge within the decision-making process. We present succinct examples of how the Bureau of Ocean Energy Management has used traditional knowledge in decision making in the North Slope Borough, Alaska: 1) using traditional knowledge in designing, planning, and conducting scientific research; 2) applying information from both knowledge systems at the earliest opportunity in the process; 3) using traditional knowledge in environmental impacts assessment; 4) consulting with indigenous leaders at key decision points; and 5) applying traditional knowledge at a programmatic decision level. Clearly articulating, early in the process, how best to use traditional knowledge and science can allow for more complete and inclusive use of available and pertinent information
Defining the Genes Required for Survival of Mycobacterium bovis in the Bovine Host Offers Novel Insights into the Genetic Basis of Survival of Pathogenic Mycobacteria
Supplementary dataset from "Defining the genes required for survival of Mycobacterium bovis in the bovine host offers novel insights into the genetic basis of survival of pathogenic mycobacteria
Genetic diversity of Mycobacterium tuberculosis isolated from tuberculosis patients in the Serengeti ecosystem in Tanzania
SummaryThis study was part of a larger cross-sectional survey that was evaluating tuberculosis (TB) infection in humans, livestock and wildlife in the Serengeti ecosystem in Tanzania. The study aimed at evaluating the genetic diversity of Mycobacterium tuberculosis isolates from TB patients attending health facilities in the Serengeti ecosystem. DNA was extracted from 214 sputum cultures obtained from consecutively enrolled newly diagnosed untreated TB patients aged ≥18 years. Spacer oligonucleotide typing (spoligotyping) and Mycobacterium Interspersed Repetitive Units and Variable Number Tandem Repeat (MIRU-VNTR) were used to genotype M. tuberculosis to establish the circulating lineages. Of the214 M. tuberculosis isolates genotyped, 55 (25.7%) belonged to the Central Asian (CAS) family, 52 (24.3%) were T family (an ill-defined family), 38 (17.8%) belonged to the Latin American Mediterranean (LAM) family, 25 (11.7%) to the East-African Indian (EAI) family, 25 (11.7%) comprised of different unassigned (‘Serengeti’) strain families, while 8 (3.7%) belonged to the Beijing family. A minority group that included Haarlem, X, U and S altogether accounted for 11 (5.2%) of all genotypes. MIRU-VNTR typing produced diverse patterns within and between families indicative of unlinked transmission chains. We conclude that, in the Serengeti ecosystem only a few successful families predominate namely CAS, T, LAM and EAI families. Other types found in lower prevalence are Beijing, Haarlem, X, S and MANU. The Haarlem, EAI_Somalia, LAM3 and S/convergent and X2 subfamilies found in this study were not reported in previous studies in Tanzania
Genetic diversity of Mycobacterium tuberculosis isolated from tuberculosis patients in the Serengeti ecosystem in Tanzania
This study was part of a larger cross-sectional survey that was evaluating tuberculosis (TB) infection in
humans, livestock and wildlife in the Serengeti ecosystem in Tanzania. The study aimed at evaluating the
genetic diversity of Mycobacterium tuberculosis isolates from TB patients attending health facilities in the
Serengeti ecosystem. DNA was extracted from 214 sputum cultures obtained from consecutively enrolled
newly diagnosed untreated TB patients aged 18 years. Spacer oligonucleotide typing (spoligotyping)
and Mycobacterium Interspersed Repetitive Units and Variable Number Tandem Repeat (MIRU-VNTR)
were used to genotype M. tuberculosis to establish the circulating lineages. Of the214 M. tuberculosis
isolates genotyped, 55 (25.7%) belonged to the Central Asian (CAS) family, 52 (24.3%) were T family (an
ill-defined family), 38 (17.8%) belonged to the Latin American Mediterranean (LAM) family, 25 (11.7%) to
the East-African Indian (EAI) family, 25 (11.7%) comprised of different unassigned (‘Serengeti’) strain
families, while 8 (3.7%) belonged to the Beijing family. A minority group that included Haarlem, X, U and
S altogether accounted for 11 (5.2%) of all genotypes. MIRU-VNTR typing produced diverse patterns
within and between families indicative of unlinked transmission chains. We conclude that, in the
Serengeti ecosystem only a few successful families predominate namely CAS, T, LAM and EAI families.
Other types found in lower prevalence are Beijing, Haarlem, X, S and MANU. The Haarlem, EAI_Somalia,
LAM3 and S/convergent and X2 subfamilies found in this study were not reported in previous studies in
Tanzania.WT087546MA and MUHAS Sida Sarec [000/3177].http://intl.elsevierhealth.com/journals/tubehb201
Mapping of Mycobacterium tuberculosis Complex Genetic Diversity Profiles in Tanzania and Other African Countries
The aim of this study was to assess and characterize Mycobacterium tuberculosis complex (MTBC) genotypic diversity in Tanzania, as well as in neighbouring East and other several African countries. We used spoligotyping to identify a total of 293 M. tuberculosis clinical isolates (one isolate per patient) collected in the Bunda, Dar es Salaam, Ngorongoro and Serengeti areas in Tanzania. The results were compared with results in the SITVIT2 international database of the Pasteur Institute of Guadeloupe. Genotyping and phylogeographical analyses highlighted the predominance of the CAS, T, EAI, and LAM MTBC lineages in Tanzania. The three most frequent Spoligotype International Types (SITs) were: SIT21/CAS1-Kili (n = 76; 25.94%), SIT59/LAM11-ZWE (n = 22; 7.51%), and SIT126/EAI5 tentatively reclassified as EAI3-TZA (n = 18; 6.14%). Furthermore, three SITs were newly created in this study (SIT4056/EAI5 n = 2, SIT4057/T1 n = 1, and SIT4058/EAI5 n = 1). We noted that the East-African-Indian (EAI) lineage was more predominant in Bunda, the Manu lineage was more common among strains isolated in Ngorongoro, and the Central-Asian (CAS) lineage was more predominant in Dar es Salaam (p-value<0.0001). No statistically significant differences were noted when comparing HIV status of patients vs. major lineages (p-value = 0.103). However, when grouping lineages as Principal Genetic Groups (PGG), we noticed that PGG2/3 group (Haarlem, LAM, S, T, and X) was more associated with HIV-positive patients as compared to PGG1 group (Beijing, CAS, EAI, and Manu) (p-value = 0.03). This study provided mapping of MTBC genetic diversity in Tanzania (containing information on isolates from different cities) and neighbouring East African and other several African countries highlighting differences as regards to MTBC genotypic distribution between Tanzania and other African countries. This work also allowed underlining of spoligotyping patterns tentatively grouped within the newly designated EAI3-TZA lineage (remarkable by absence of spacers 2 and 3, and represented by SIT126) which seems to be specific to Tanzania. However, further genotyping information would be needed to confirm this specificity
- …