40 research outputs found
Method of constructing exactly solvable chaos
We present a new systematic method of constructing rational mappings as
ergordic transformations with nonuniform invariant measures on the unit
interval [0,1]. As a result, we obtain a two-parameter family of rational
mappings that have a special property in that their invariant measures can be
explicitly written in terms of algebraic functions of parameters and a
dynamical variable. Furthermore, it is shown here that this family is the most
generalized class of rational mappings possessing the property of exactly
solvable chaos on the unit interval, including the Ulam=Neumann map y=4x(1-x).
Based on the present method, we can produce a series of rational mappings
resembling the asymmetric shape of the experimentally obtained first return
maps of the Beloussof-Zhabotinski chemical reaction, and we can match some
rational functions with other experimentally obtained first return maps in a
systematic manner.Comment: 12 pages, 2 figures, REVTEX. Title was changed. Generalized Chebyshev
maps including the precise form of two-parameter generalized cubic maps were
added. Accepted for publication in Phys. Rev. E(1997
Recommended from our members
Libra: scalable k-mer-based tool for massive all-vs-all metagenome comparisons
Background Shotgun metagenomics provides powerful insights into microbial community biodiversity and function. Yet, inferences from metagenomic studies are often limited by dataset size and complexity and are restricted by the availability and completeness of existing databases. De novo comparative metagenomics enables the comparison of metagenomes based on their total genetic content. Results We developed a tool called Libra that performs an all-vs-all comparison of metagenomes for precise clustering based on their k-mer content. Libra uses a scalable Hadoop framework for massive metagenome comparisons, Cosine Similarity for calculating the distance using sequence composition and abundance while normalizing for sequencing depth, and a web-based implementation in iMicrobe (http://imicrobe.us) that uses the CyVerse advanced cyberinfrastructure to promote broad use of the tool by the scientific community. Conclusions A comparison of Libra to equivalent tools using both simulated and real metagenomic datasets, ranging from 80 million to 4.2 billion reads, reveals that methods commonly implemented to reduce compute time for large datasets, such as data reduction, read count normalization, and presence/absence distance metrics, greatly diminish the resolution of large-scale comparative analyses. In contrast, Libra uses all of the reads to calculate k-mer abundance in a Hadoop architecture that can scale to any size dataset to enable global-scale analyses and link microbial signatures to biological processes.National Science Foundation [1640775]Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Modified-release hydrocortisone to provide circadian cortisol profiles
Context: Cortisol has a distinct circadian rhythm regulated by the brain's central pacemaker. Loss of this rhythm is associated with metabolic abnormalities, fatigue, and poor quality of life. Conventional glucocorticoid replacement cannot replicate this rhythm.
Objectives: Our objectives were to define key variables of physiological cortisol rhythm, and by pharmacokinetic modeling test whether modified-release hydrocortisone (MR-HC) can provide circadian cortisol profiles.
Setting: The study was performed at a Clinical Research Facility.
Design and Methods: Using data from a cross-sectional study in healthy reference subjects (n = 33), we defined parameters for the cortisol rhythm. We then tested MR-HC against immediate-release hydrocortisone in healthy volunteers (n = 28) in an open-label, randomized, single-dose, cross-over study. We compared profiles with physiological cortisol levels, and modeled an optimal treatment regimen.
Results: The key variables in the physiological cortisol profile included: peak 15.5 mu g/dl (95% reference range 11.7-20.6), acrophase 0832 h(95% confidence interval 0759-0905), nadir less than 2 mu g/dl (95% reference range 1.5-2.5), time of nadir 0018 h (95% confidence interval 2339-0058), and quiescent phase (below the mesor) 1943-0531 h. MR-HC 15 mg demonstrated delayed and sustained release with a mean (SEM) maximum observed concentration of 16.6 (1.4) mu g/dl at 7.41 (0.57) h after drug. Bioavailability of MR-HC 5, 10, and 15 mg was 100, 79, and 86% that of immediate-release hydrocortisone. Modeling suggested that MR-HC 15-20 mg at 2300 h and 10 mg at 0700 h could reproduce physiological cortisol levels.
Conclusion: By defining circadian rhythms and using modern formulation technology, it is possible to allow a more physiological circadian replacement of cortisol. (J Clin Endocrinol Metab 94: 1548-1554, 2009
Extreme Feedback and the Epoch of Reionization: Clues in the Local Universe
The source responsible for reionizing the universe at z > 6 remains
uncertain. While an energetically adequate population of star-forming galaxies
may be in place, it is unknown whether a large enough fraction of their
ionizing radiation can escape into the intergalactic medium. Attempts to
measure this escape-fraction in intensely star-forming galaxies at lower
redshifts have largely yielded upper limits. In this paper we present new HST
COS and archival FUSE far-UV spectroscopy of a sample of eleven Lyman Break
Analogs (LBAs), a rare population of local galaxies that strongly resemble the
high-z Lyman Break galaxies. We combine these data with SDSS optical spectra
and Spitzer photometry. We also analyze archival FUSE observations of fifteen
typical UV-bright local starbursts. We find evidence of small covering factors
for optically-thick neutral gas in 3 cases. This is based on two independent
pieces of evidence: a significant residual intensity in the cores of the
strongest interstellar absorption-lines tracing neutral gas and a small ratio
of extinction-corrected H-alpha to UV plus far-IR luminosities. These objects
represent three of the four LBAs that contain a young, very compact (~100pc),
and highly massive (~10^9 Mo) dominant central object (DCO). These three
objects also differ from the other galaxies in showing a significant amount of
blueshifted Ly-alpha emission, which may be related to the low covering factor
of neutral gas. All four LBAs with DCOs in our sample show extremely high
velocity outflows of interstellar gas, with line centroids blueshifted by about
700km/s and maximum outflow velocities reaching at least 1500km/s. We show that
these properties are consistent with an outflow driven by a powerful starburst
that is exceptionally compact. We speculate that such extreme feedback may be
required to enable the escape of ionizing radiation from star forming galaxies.Comment: Accepted for publication in ApJ. 14 pages, 8 figures, 2 table
Recommended from our members
Gramene: a growing plant comparative genomics resource
Gramene (www.gramene.org) is a curated resource
for genetic, genomic and comparative genomics
data for the major crop species, including rice,
maize, wheat and many other plant (mainly grass)
species. Gramene is an open-source project.
All data and software are freely downloadable
through the ftp site (ftp.gramene.org/pub/gramene)
and available for use without restriction. Gramene’s
core data types include genome assembly and
annotations, other DNA/mRNA sequences, genetic
and physical maps/markers, genes, quantitative
trait loci (QTLs), proteins, ontologies, literature
and comparative mappings. Since our last NAR
publication 2 years ago, we have updated these data
types to include new datasets and new connections
among them. Completely new features include
rice pathways for functional annotation of rice
genes; genetic diversity data from rice, maize and
wheat to show genetic variations among different
germplasms; large-scale genome comparisons
among Oryza sativa and its wild relatives for
evolutionary studies; and the creation of orthologous
gene sets and phylogenetic trees among
rice, Arabidopsis thaliana, maize, poplar and several
animal species (for reference purpose). We have
significantly improved the web interface in order
to provide a more user-friendly browsing
experience, including a dropdown navigation
menu system, unified web page for markers,
genes, QTLs and proteins, and enhanced quick
search functions.This is the publisher’s final pdf. The published article is copyrighted by the author(s) and published by Oxford University Press. The published article can be found at: http://nar.oxfordjournals.org/
Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world
Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic.
Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality.
Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States.
Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis.
Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two
Background
The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd.
Methods
We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background.
Results
First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001).
Conclusions
In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
iVirus: facilitating new insights in viral ecology with software and community data sets imbedded in a cyberinfrastructure.
Microbes affect nutrient and energy transformations throughout the world's ecosystems, yet they do so under viral constraints. In complex communities, viral metagenome (virome) sequencing is transforming our ability to quantify viral diversity and impacts. Although some bottlenecks, for example, few reference genomes and nonquantitative viromics, have been overcome, the void of centralized data sets and specialized tools now prevents viromics from being broadly applied to answer fundamental ecological questions. Here we present iVirus, a community resource that leverages the CyVerse cyberinfrastructure to provide access to viromic tools and data sets. The iVirus Data Commons contains both raw and processed data from 1866 samples and 73 projects derived from global ocean expeditions, as well as existing and legacy public repositories. Through the CyVerse Discovery Environment, users can interrogate these data sets using existing analytical tools (software applications known as 'Apps') for assembly, open reading frame prediction and annotation, as well as several new Apps specifically developed for analyzing viromes. Because Apps are web based and powered by CyVerse supercomputing resources, they enable scalable analyses for a broad user base. Finally, a use-case scenario documents how to apply these advances toward new data. This growing iVirus resource should help researchers utilize viromics as yet another tool to elucidate viral roles in nature
Recommended from our members
iVirus: facilitating new insights in viral ecology with software and community data sets imbedded in a cyberinfrastructure.
Microbes affect nutrient and energy transformations throughout the world's ecosystems, yet they do so under viral constraints. In complex communities, viral metagenome (virome) sequencing is transforming our ability to quantify viral diversity and impacts. Although some bottlenecks, for example, few reference genomes and nonquantitative viromics, have been overcome, the void of centralized data sets and specialized tools now prevents viromics from being broadly applied to answer fundamental ecological questions. Here we present iVirus, a community resource that leverages the CyVerse cyberinfrastructure to provide access to viromic tools and data sets. The iVirus Data Commons contains both raw and processed data from 1866 samples and 73 projects derived from global ocean expeditions, as well as existing and legacy public repositories. Through the CyVerse Discovery Environment, users can interrogate these data sets using existing analytical tools (software applications known as 'Apps') for assembly, open reading frame prediction and annotation, as well as several new Apps specifically developed for analyzing viromes. Because Apps are web based and powered by CyVerse supercomputing resources, they enable scalable analyses for a broad user base. Finally, a use-case scenario documents how to apply these advances toward new data. This growing iVirus resource should help researchers utilize viromics as yet another tool to elucidate viral roles in nature