19 research outputs found

    PROOF OF CONCEPT FOR 3-D PRINTABLE GEOMETRY OF MICROFLUIDIC BENTHIC MICROBIAL FUEL CELL DEVICE (MBMFC) WITH SELF-ASSEMBLED WIRING

    Get PDF
    Extensive use of Unmanned Underwater Vehicles (UUVs) and remote equipment in future Naval operations leads to an energy logistics challenge for their rechargeable batteries. A solution to this challenge is a distributed network of renewable power sources detached from mainland power grids. One potential solution is Benthic Microbial Fuel Cell (BMFC) devices. BMFCs must be optimized and upscaled to produce power at relevant scales. 3-D printing is a promising manufacturing method to achieve scalable BMFC devices. In this thesis, we devised, developed, and optimized a protocol for clearance of microfluidic channels using square cross-sections embedded within PolyJet 3-D-printed chips. The developed protocol demonstrated 75% volumetric clearance of the embedded channels. The protocol was then used to clear channels with T-shaped cross-sections, which were used to produce an experimental proof of principle for self-assembled wiring within the microchannels due to fluidic surface tension. These advancements have opened the door to embedded wiring for 3-D printed biofuel cells and other microfluidic technologies. When perfected and manufactured at scale, biofuel cells could provide a solution to the critical logistics problem of recharging UUVs and similar equipment employed in remote maritime environments, thereby making an exceptional contribution to the U.S. Navy, U.S. national security, and the related research fields.Office of Naval Research, Arlington, VA 22203Lieutenant, United States NavyApproved for public release. Distribution is unlimited

    Particle suspension reactors and materials for solar-driven water splitting

    Get PDF
    Reactors based on particle suspensions for the capture, conversion, storage, and use of solar energy as H_2 are projected to be cost-competitive with fossil fuels. In light of this, this review paper summarizes state-of-the-art particle light absorbers and cocatalysts as suspensions (photocatalysts) that demonstrate visible-light-driven water splitting on the laboratory scale. Also presented are reactor descriptions, theoretical considerations particular to particle suspension reactors, and efficiency and performance characterization metrics. Opportunities for targeted research, analysis, and development of reactor designs are highlighted

    A genome-wide association study identifies risk alleles in plasminogen and P4HA2 associated with giant cell arteritis

    Get PDF
    Giant cell arteritis (GCA) is the most common form of vasculitis in individuals older than 50 years in Western countries. To shed light onto the genetic background influencing susceptibility for GCA, we performed a genome-wide association screening in a well-powered study cohort. After imputation, 1,844,133 genetic variants were analysed in 2,134 cases and 9,125 unaffected controls from ten independent populations of European ancestry. Our data confirmed HLA class II as the strongest associated region (independent signals: rs9268905, P = 1.94E-54, per-allele OR = 1.79; and rs9275592, P = 1.14E-40, OR = 2.08). Additionally, PLG and P4HA2 were identified as GCA risk genes at the genome-wide level of significance (rs4252134, P = 1.23E-10, OR = 1.28; and rs128738, P = 4.60E-09, OR = 1.32, respectively). Interestingly, we observed that the association peaks overlapped with different regulatory elements related to cell types and tissues involved in the pathophysiology of GCA. PLG and P4HA2 are involved in vascular remodelling and angiogenesis, suggesting a high relevance of these processes for the pathogenic mechanisms underlying this type of vasculitis

    Estimating overdiagnosis in giant cell arteritis diagnostic pathways using genetic data: genetic association study

    Get PDF
    Objectives GCA can be confirmed by temporal artery biopsy (TAB) but false negatives can occur. GCA may be overdiagnosed in TAB-negative cases, or if neither TAB nor imaging is done. We used HLA genetic association of TAB-positive GCA as an ‘unbiased umpire’ test to estimate historic overdiagnosis of GCA. Methods Patients diagnosed with GCA between 1990 and 2014 were genotyped. During this era, vascular imaging alone was rarely used to diagnose GCA. HLA region variants were jointly imputed from genome-wide genotypic data of cases and controls. Per-allele frequencies across all HLA variants with P < 1.0 × 10−5 were compared with population control data to estimate overdiagnosis rates in cases without a positive TAB. Results Genetic data from 663 GCA patients were compared with data from 2619 population controls. TAB-negative GCA (n = 147) and GCA without TAB result (n = 160) had variant frequencies intermediate between TAB-positive GCA (n = 356) and population controls. For example, the allele frequency of HLA-DRB1*04 was 32% for TAB-positive GCA, 29% for GCA without TAB result, 27% for TAB-negative GCA and 20% in population controls. Making several strong assumptions, we estimated that around two-thirds of TAB-negative cases and one-third of cases without TAB result may have been overdiagnosed. From these data, TAB sensitivity is estimated as 88%. Conclusions Conservatively assuming 95% specificity, TAB has a negative likelihood ratio of around 0.12. Our method for utilizing standard genotyping data as an ‘unbiased umpire’ might be used as a way of comparing the accuracy of different diagnostic pathways

    Coupling Droplet Microfluidics with Mass Spectrometry for Ultrahigh-Throughput Analysis of Complex Mixtures up to and above 30 Hz

    No full text
    High- and ultrahigh-throughput label-free sample analysis is required by many applications, extending from environmental monitoring to drug discovery and industrial biotechnology. HTS methods predominantly are based on a targeted workflow, which can limit their scope. Mass spectrometry readily provides chemical identity and abundance for complex mixtures, and here, we use microdroplet generation microfluidics to supply picoliter aliquots for analysis at rates up to and including 33 Hz. This is demonstrated for small molecules, peptides, and proteins up to 66 kDa on three commercially available mass spectrometers from salty solutions to mimic cellular environments. Designs for chip-based interfaces that permit this coupling are presented, and the merits and challenges of these interfaces are discussed. On an Orbitrap platform droplet infusion rates of 6 Hz are used for analysis of cytochrome c, on a DTIMS Q-TOF similar rates were obtained, and on a TWIMS Q-TOF utilizing IM-MS software rates up to 33 Hz are demonstrated. The potential of this approach is demonstrated with proof of concept experiments on crude mixtures including egg white, unpurified recombinant protein, and a biotransformation supernatant
    corecore