211 research outputs found

    The neutron electric dipole form factor in the perturbative chiral quark model

    Full text link
    We calculate the electric dipole form factor of the neutron in a perturbative chiral quark model, parameterizing CP-violation of generic origin by means of effective electric dipole moments of the constituent quarks and their CP-violating couplings to the chiral fields. We discuss the relation of these effective parameters to more fundamental ones such as the intrinsic electric and chromoelectric dipole moments of quarks and the Weinberg parameter. From the existing experimental upper limits on the neutron EDM we derive constraints on these CP-violating parameters.Comment: 20 pages, 3 figure

    Deep Underground Science and Engineering Laboratory - Preliminary Design Report

    Full text link
    The DUSEL Project has produced the Preliminary Design of the Deep Underground Science and Engineering Laboratory (DUSEL) at the rehabilitated former Homestake mine in South Dakota. The Facility design calls for, on the surface, two new buildings - one a visitor and education center, the other an experiment assembly hall - and multiple repurposed existing buildings. To support underground research activities, the design includes two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the design includes a Department of Energy-shepherded Large Cavity supporting the Long Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates one laboratory module and additional spaces for physics and Earth science efforts. With input from some 25 science and engineering collaborations, the Project has designed critical experimental space and infrastructure needs, including space for a suite of multidisciplinary experiments in a laboratory whose projected life span is at least 30 years. From these experiments, a critical suite of experiments is outlined, whose construction will be funded along with the facility. The Facility design permits expansion and evolution, as may be driven by future science requirements, and enables participation by other agencies. The design leverages South Dakota's substantial investment in facility infrastructure, risk retirement, and operation of its Sanford Laboratory at Homestake. The Project is planning education and outreach programs, and has initiated efforts to establish regional partnerships with underserved populations - regional American Indian and rural populations

    Distance Education as socio-material assemblage: Place, distribution and aggregation

    Get PDF
    This paper outlines some of the material assemblages that are formed in international distance education (DE) in Africa. It offers a first exploratory study of materialities in DE and how they potentially distribute and aggregate to form a network to provide education. Through the use of interviews, students lived experiences are explored to unpack the multiplicity of networks needed to overcome the de‐aggregated and distributed institution. The multiplicity of networks that form in DE brings challenges that question how spaces become connected and disconnected and how different materialities shape DE. The materialities in DE produce forces and effects, such as translocal and transmobilites that are more than just the human actor, but extrude materials, networks, and connectives that transform continuously. The interconnectivities of the university and home or institution and students are brought together through enabling technology, but infrastructure does not always have the ability for the facilitation of aggregation

    Testing LMC Microlensing Scenarios: The Discrimination Power of the SuperMACHO Microlensing Survey

    Get PDF
    Characterizing the nature and spatial distribution of the lensing objects that produce the previously measured microlensing optical depth toward the Large Magellanic Cloud (LMC) remains an open problem. We present an appraisal of the ability of the SuperMACHO Project, a next-generation microlensing survey directed toward the LMC, to discriminate between various proposed lensing populations. We consider two scenarios: lensing by a uniform foreground screen of objects and self-lensing by LMC stars. We have carried out extensive simulations, based upon data obtained during the first year of the project, to assess the SuperMACHO survey's ability to discriminate between these two scenarios. We find that the event rate itself shows significant sensitivity to the choice of the LMC luminosity function, limiting the conclusions which can be drawn from the absolute rate. If instead we determine the differential event rate across the LMC, we will decrease the impact of these systematic biases and render our conclusions more robust. With this approach the SuperMACHO Project should be able to distinguish between the two categories of lens populations. This will provide important constraints on the nature of the lensing objects and their contributions to the Galactic dark matter halo.Comment: 40 pages, 9 figures, to appear in ApJ 634 (2005

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Innovation in health economic modelling of service improvements for longer-term depression: demonstration in a local health community

    Get PDF
    Background The purpose of the analysis was to develop a health economic model to estimate the costs and health benefits of alternative National Health Service (NHS) service configurations for people with longer-term depression. Method Modelling methods were used to develop a conceptual and health economic model of the current configuration of services in Sheffield, England for people with longer-term depression. Data and assumptions were synthesised to estimate cost per Quality Adjusted Life Years (QALYs). Results Three service changes were developed and resulted in increased QALYs at increased cost. Versus current care, the incremental cost-effectiveness ratio (ICER) for a self-referral service was ÂŁ11,378 per QALY. The ICER was ÂŁ2,227 per QALY for the dropout reduction service and ÂŁ223 per QALY for an increase in non-therapy services. These results were robust when compared to current cost-effectiveness thresholds and accounting for uncertainty. Conclusions Cost-effective service improvements for longer-term depression have been identified. Also identified were limitations of the current evidence for the long term impact of services
    • 

    corecore