19 research outputs found

    Multiple Wnts Redundantly Control Polarity Orientation in Caenorhabditis elegans Epithelial Stem Cells

    Get PDF
    During development, cell polarization is often coordinated to harmonize tissue patterning and morphogenesis. However, how extrinsic signals synchronize cell polarization is not understood. In Caenorhabditis elegans, most mitotic cells are polarized along the anterior-posterior axis and divide asymmetrically. Although this process is regulated by a Wnt-signaling pathway, Wnts functioning in cell polarity have been demonstrated in only a few cells. We analyzed how Wnts control cell polarity, using compound Wnt mutants, including animals with mutations in all five Wnt genes. We found that somatic gonadal precursor cells (SGPs) are properly polarized and oriented in quintuple Wnt mutants, suggesting Wnts are dispensable for the SGPs' polarity, which instead requires signals from the germ cells. Thus, signals from the germ cells organize the C. elegans somatic gonad. In contrast, in compound but not single Wnt mutants, most of the six seam cells, V1–V6 (which are epithelial stem cells), retain their polarization, but their polar orientation becomes random, indicating that it is redundantly regulated by multiple Wnt genes. In contrast, in animals in which the functions of three Wnt receptors (LIN-17, MOM-5, and CAM-1) are disrupted—the stem cells are not polarized and divide symmetrically—suggesting that the Wnt receptors are essential for generating polarity and that they function even in the absence of Wnts. All the seam cells except V5 were polarized properly by a single Wnt gene expressed at the cell's anterior or posterior. The ectopic expression of posteriorly expressed Wnts in an anterior region and vice versa rescued polarity defects in compound Wnt mutants, raising two possibilities: one, Wnts permissively control the orientation of polarity; or two, Wnt functions are instructive, but which orientation they specify is determined by the cells that express them. Our results provide a paradigm for understanding how cell polarity is coordinated by extrinsic signals

    Knockin mouse with mutant Gα11 mimics human inherited hypocalcemia and is rescued by pharmacologic inhibitors

    Get PDF
    Heterotrimeric G proteins play critical roles in transducing extracellular signals generated by 7-transmembrane domain receptors. Somatic gain-of-function mutations in G protein α subunits are associated with a variety of diseases. Recently, we identified gain-of-function mutations in Gα(11) in patients with autosomal-dominant hypocalcemia type 2 (ADH2), an inherited disorder of hypocalcemia, low parathyroid hormone (PTH), and hyperphosphatemia. We have generated knockin mice harboring the point mutation GNA11 c.C178T (p.Arg60Cys) identified in ADH2 patients. The mutant mice faithfully replicated human ADH2. They also exhibited low bone mineral density and increased skin pigmentation. Treatment with NPS 2143, a negative allosteric modulator of the calcium-sensing receptor (CASR), increased PTH and calcium concentrations in WT and mutant mice, suggesting that the gain-of-function effect of GNA11(R6OC) is partly dependent on coupling to the CASR. Treatment with the Gα(11/q)-specific inhibitor YM-254890 increased blood calcium in heterozygous but not in homozygous GNA11(R60C) mice, consistent with published crystal structure data showing that Arg60 forms a critical contact with YM-254890. This animal model of ADH2 provides insights into molecular mechanism of this G protein–related disease and potential paths toward new lines of therapy

    Simplet/Fam53b is required for Wnt signal transduction by regulating β-catenin nuclear localization

    No full text
    Canonical beta-catenin-dependent Wnt signal transduction is important for several biological phenomena, such as cell fate determination, cell proliferation, stem cell maintenance and anterior-posterior axis formation. The hallmark of canonical Wnt signaling is the translocation of beta-catenin into the nucleus where it activates gene transcription. However, the mechanisms regulating beta-catenin nuclear localization are poorly understood. We show that Simplet/Fam53B (Smp) is required forWnt signaling by positively regulating beta-catenin nuclear localization. In the zebrafish embryo, the loss of smp blocks the activity of two beta-catenin-dependent reporters and the expression of Wnt target genes, and prevents nuclear accumulation of beta-catenin. Conversely, overexpression of smp increases beta-catenin nuclear localization and transcriptional activity in vitro and in vivo. Expression of mutant Smp proteins lacking either the nuclear localization signal or the beta-catenin interaction domain reveal that the translocation of Smp into the nucleus is essential for beta-catenin nuclear localization and Wnt signaling in vivo. We also provide evidence that mammalian Smp is involved in regulating beta-catenin nuclear localization: the protein colocalizes with beta-catenin-dependent gene expression in mouse intestinal crypts; siRNA knockdown of Smp reduces beta-catenin nuclear localization and transcriptional activity; human SMP mediates beta-catenin transcriptional activity in a dose-dependent manner; and the human SMP protein interacts with human beta-catenin primarily in the nucleus. Thus, our findings identify the evolutionary conserved SMP protein as a regulator of beta-catenin-dependent Wnt signal transduction
    corecore