58 research outputs found

    Incidence of first stroke and ethnic differences in stroke pattern in Bradford, UK: Bradford Stroke Study

    Get PDF
    Background: Information on ethnic disparities in stroke between White and Pakistani population in Europe is scarce. Bradford District has the largest proportion of Pakistani people in England; this provides a unique opportunity to study the difference in stroke between the two major ethnic groups. Aim: To determine the first-ever-stroke incidence and examine the disparities in stroke patterns between Whites and Pakistanis in Bradford. Methods: Prospective 12 months study consisting of 273,327 adults (≥18 years) residents. Stroke cases were identified by multiple overlapping approaches. Results: In the study period, 541 first-ever-strokes were recorded. The crude incidence rate was 198 per 100,000 person-years. Age adjusted-standardized rate to the World Health Organization world population of first-ever-stroke is 155 and 101 per 100,000 person-years in Pakistanis and Whites respectively. Four hundred and thirty-eight patients (81%) were Whites, 83 (15.3%) were Pakistanis, 11 (2%) were Indian and Bangladeshis, and 9 (1.7%) were of other ethnic origin. Pakistanis were significantly younger and had more obesity (p = 0.049), and diabetes mellitus (DM) (p = <0.001). They were less likely to suffer from atrial fibrillation (p = <0.001), be ex- or current smokers (p = <0.001), and drink alcohol above the recommended level (p = 0.007) compared with Whites. In comparison with Whites, higher rates of age-adjusted stroke (1.5-fold), lacunar infarction (threefold), and ischemic infarction due to large artery disease (twofold) were found in the Pakistanis. Conclusions: The incidence of first-ever-stroke is higher in the Pakistanis compared with the Whites in Bradford, UK. Etiology and vascular risk factors vary between the ethnic groups. This information should be considered when investigating stroke etiology, and when planning prevention and care provision to improve outcomes after stroke

    Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study

    Get PDF
    Progressive functional decline in the epilepsies is largely unexplained. We formed the ENIGMA-Epilepsy consortium to understand factors that influence brain measures in epilepsy, pooling data from 24 research centres in 14 countries across Europe, North and South America, Asia, and Australia. Structural brain measures were extracted from MRI brain scans across 2149 individuals with epilepsy, divided into four epilepsy subgroups including idiopathic generalized epilepsies (n =367), mesial temporal lobe epilepsies with hippocampal sclerosis (MTLE; left, n = 415; right, n = 339), and all other epilepsies in aggregate (n = 1026), and compared to 1727 matched healthy controls. We ranked brain structures in order of greatest differences between patients and controls, by meta-Analysing effect sizes across 16 subcortical and 68 cortical brain regions. We also tested effects of duration of disease, age at onset, and age-by-diagnosis interactions on structural measures. We observed widespread patterns of altered subcortical volume and reduced cortical grey matter thickness. Compared to controls, all epilepsy groups showed lower volume in the right thalamus (Cohen's d = \uc3\ua2 '0.24 to \uc3\ua2 '0.73; P < 1.49 \uc3\u97 10 \uc3\ua2 '4), and lower thickness in the precentral gyri bilaterally (d = \uc3\ua2 '0.34 to \uc3\ua2 '0.52; P < 4.31 \uc3\u97 10 \uc3\ua2 '6). Both MTLE subgroups showed profound volume reduction in the ipsilateral hippocampus (d = \uc3\ua2 '1.73 to \uc3\ua2 '1.91, P < 1.4 \uc3\u97 10 \uc3\ua2 '19), and lower thickness in extrahippocampal cortical regions, including the precentral and paracentral gyri, compared to controls (d = \uc3\ua2 '0.36 to \uc3\ua2 '0.52; P < 1.49 \uc3\u97 10 \uc3\ua2 '4). Thickness differences of the ipsilateral temporopolar, parahippocampal, entorhinal, and fusiform gyri, contralateral pars triangularis, and bilateral precuneus, superior frontal and caudal middle frontal gyri were observed in left, but not right, MTLE (d = \uc3\ua2 '0.29 to \uc3\ua2 '0.54; P < 1.49 \uc3\u97 10 \uc3\ua2 '4). Contrastingly, thickness differences of the ipsilateral pars opercularis, and contralateral transverse temporal gyrus, were observed in right, but not left, MTLE (d = \uc3\ua2 '0.27 to \uc3\ua2 '0.51; P < 1.49 \uc3\u97 10 \uc3\ua2 '4). Lower subcortical volume and cortical thickness associated with a longer duration of epilepsy in the all-epilepsies, all-other-epilepsies, and right MTLE groups (beta, b < \uc3\ua2 '0.0018; P < 1.49 \uc3\u97 10 \uc3\ua2 '4). In the largest neuroimaging study of epilepsy to date, we provide information on the common epilepsies that could not be realistically acquired in any other way. Our study provides a robust ranking of brain measures that can be further targeted for study in genetic and neuropathological studies. This worldwide initiative identifies patterns of shared grey matter reduction across epilepsy syndromes, and distinctive abnormalities between epilepsy syndromes, which inform our understanding of epilepsy as a network disorder, and indicate that certain epilepsy syndromes involve more widespread structural compromise than previously assumed

    Nothing Lasts Forever: Environmental Discourses on the Collapse of Past Societies

    Get PDF
    The study of the collapse of past societies raises many questions for the theory and practice of archaeology. Interest in collapse extends as well into the natural sciences and environmental and sustainability policy. Despite a range of approaches to collapse, the predominant paradigm is environmental collapse, which I argue obscures recognition of the dynamic role of social processes that lie at the heart of human communities. These environmental discourses, together with confusion over terminology and the concepts of collapse, have created widespread aporia about collapse and resulted in the creation of mixed messages about complex historical and social processes

    Identification of novel loci associated with gastrointestinal parasite resistance in a Red Maasai x Dorper backcross population

    Get PDF
    Gastrointestinal (GI) parasitic infection is the main health constraint for small ruminant production, causing loss of weight and/or death. Red Maasai sheep have adapted to a tropical environment where extreme parasite exposure is a constant, especially with highly pathogenic Haemonchus contortus. This breed has been reported to be resistant to gastrointestinal parasite infection, hence it is considered an invaluable resource to study associations between host genetics and resistance. The aim of this study was to identify polymorphisms strongly associated with host resistance in a double backcross population derived from Red Maasai and Dorper sheep using a SNP-based GWAS analysis. The animals that were genotyped represented the most resistant and susceptible individuals based on the tails of phenotypic distribution (10% each) for average faecal egg counts (AVFEC). AVFEC, packed cell volume (AVPCV), and live weight (AVLWT) were adjusted for fixed effects and co-variables, and an association analysis was run using EMMAX. Revised significance levels were calculated using 100,000 permutation tests. The top five significant SNP markers with - log10 p-values >3.794 were observed on five different chromosomes for AVFEC, and BLUPPf90/PostGSf90 results confirmed EMMAX significant regions for this trait. One of these regions included a cluster of significant SNP on chromosome (Chr) 6 not in linkage disequilibrium to each other. This genomic location contains annotated genes involved in cytokine signalling, haemostasis and mucus biosynthesis. Only one association detected on Chr 7 was significant for both AVPCV and AVLWT. The results generated here reveal candidate immune variants for genes involved in differential response to infection and provide additional SNP marker information that has potential to aid selection of resistance to gastrointestinal parasites in sheep of a similar genetic background to the double backcross population

    Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study

    Get PDF

    B: Underconnected, but how? A survey of functional connectivity MRI studies in autism spectrum disorders

    No full text
    Growing consensus suggests that autism spectrum disorders (ASD) are associated with atypical brain networks, thus shifting the focus to the study of connectivity. Many functional connectivity studies have reported underconnectivity in ASD, but results in others have been divergent. We conducted a survey of 32 functional connectivity magnetic resonance imaging studies of ASD for numerous methodological variables to distinguish studies supporting general underconnectivity (GU) from those not consistent with this hypothesis (NGU). Distinguishing patterns were apparent for several data analysis choices. The study types differed significantly with respect to low-pass filtering, task regression, and whole-brain field of view. GU studies were more likely to examine task-driven time series in regions of interest, without the use of low-pass filtering. Conversely, NGU studies mostly applied task regression (for removal of activation effects) and low-pass filtering, testing for correlations across the whole brain. Results thus suggest that underconnectivity findings may be contingent on specific methodological choices. Whereas underconnectivity reflects reduced efficiency of within-network communication in ASD, diffusely increased functional connectivity can be attributed to impaired experience-driven mechanisms (e.g., synaptic pruning). Both GU and NGU findings reflect important aspects of network dysfunction associated with sociocommunicative, cognitive, and sensorimotor impairments in ASD

    Restriction spectrum imaging reveals decreased neurite density in patients with temporal lobe epilepsy.

    No full text
    ObjectiveDiffusion tensor imaging (DTI) has become a popular tool for delineating the location and extent of white matter injury in temporal lobe epilepsy (TLE). However, DTI yields nonspecific measures that are confounded by changes occurring within both the intracellular and extracellular environments. This study investigated whether an advanced diffusion method, restriction spectrum imaging (RSI) could provide a more robust measure of white matter injury in TLE relative to DTI due to RSI's ability to separate intraaxonal diffusion (i.e., neurite density; ND) from diffusion associated with extraaxonal factors (e.g., inflammation; crossing fibers).MethodsRSI and DTI scans were obtained on 21 patients with TLE and 11 age-matched controls. RSI-derived maps of ND, isotropic-hindered (IH) and isotropic-free (IF) water, and crossing fibers (CFs) were compared to DTI-derived fractional anisotropy (FA) maps. Voxelwise and tract-based analyses were performed comparing patients with TLE to controls on each diffusion metric.ResultsReductions in FA were seen primarily in frontotemporal white matter in TLE, and they were most pronounced proximal to the seizure focus. Reductions in ND corresponded to those seen in the FA maps; however, ND reductions were greater in magnitude, more lateralized to the epileptogenic hemisphere, and showed a broader pattern. Increases in IF/IH and effects from CFs also contributed to reduced FA in the ipsilateral parahippocampal cingulum and fornix, with decreases in IH extending into extratemporal regions. Reduced ND of the uncinate fasciculus was associated with longer disease duration, whereas FA was not associated with any clinical variables.SignificanceRSI may provide a more specific measure of white matter pathology in TLE, distinguishing regions primarily affected by axonal/myelin loss from those where CFs and increases in extracellular water also play a role. By providing a more specific measure of axonal/myelin loss, RSI-derived ND may better reflect overall white matter burden in epilepsy
    corecore