19 research outputs found

    “Born to Run”? Not Necessarily: Species and Trait Bias in Persistent Free-Living Transgenic Plants

    Get PDF
    The possibility of transgenes from engineered plants ending up in unmanaged populations with undesirable consequences has been a long-term biosafety concern. Experience with traditionally improved plants reveals that most cases of such gene escape have been of little consequence, but on occasion they have led to the evolution of problematic plants or have resulted in an increased extinction risk for wild taxa. Three decades have passed since the first environmental release of transgenic plants, and more than two decades since their first commercialization. Examples of transgenes gone astray are increasingly commonplace. Transgenic individuals have been identified in more than a thousand free-living plant populations. Here I review 14 well-documented consolidated “cases” in which transgenes have found their way into free-living plant populations. Some as transient volunteers; others appear to be persistent transgenic populations. The species involved in the latter are not representative of the current commercialized transgenic crops as whole. They tend to share certain traits that are absent or rare in the transgenic crops that do not exist as persistent populations. The traits commonly occurring in species with persistent transgenic free-living populations are the following, in descending order of importance: (1) a history of occurring as non-transgenic free-living plants, (2) fruits fully or partially shattering prior to harvest, (3) have small or otherwise easily dispersed seeds, either spontaneously or by seed spillage along the supply chain from harvest to consumer, (4) ability to disperse viable pollen, especially to a kilometer or more, (5) perennial habit, and (6) the transgene's fitness effects in the recipient environment are beneficial or neutral. Based on these observations, a thought experiment posits which species might be the next to be reported to occur as free-living transgenic populations

    Psychosocial impact of undergoing prostate cancer screening for men with BRCA1 or BRCA2 mutations.

    Get PDF
    OBJECTIVES: To report the baseline results of a longitudinal psychosocial study that forms part of the IMPACT study, a multi-national investigation of targeted prostate cancer (PCa) screening among men with a known pathogenic germline mutation in the BRCA1 or BRCA2 genes. PARTICPANTS AND METHODS: Men enrolled in the IMPACT study were invited to complete a questionnaire at collaborating sites prior to each annual screening visit. The questionnaire included sociodemographic characteristics and the following measures: the Hospital Anxiety and Depression Scale (HADS), Impact of Event Scale (IES), 36-item short-form health survey (SF-36), Memorial Anxiety Scale for Prostate Cancer, Cancer Worry Scale-Revised, risk perception and knowledge. The results of the baseline questionnaire are presented. RESULTS: A total of 432 men completed questionnaires: 98 and 160 had mutations in BRCA1 and BRCA2 genes, respectively, and 174 were controls (familial mutation negative). Participants' perception of PCa risk was influenced by genetic status. Knowledge levels were high and unrelated to genetic status. Mean scores for the HADS and SF-36 were within reported general population norms and mean IES scores were within normal range. IES mean intrusion and avoidance scores were significantly higher in BRCA1/BRCA2 carriers than in controls and were higher in men with increased PCa risk perception. At the multivariate level, risk perception contributed more significantly to variance in IES scores than genetic status. CONCLUSION: This is the first study to report the psychosocial profile of men with BRCA1/BRCA2 mutations undergoing PCa screening. No clinically concerning levels of general or cancer-specific distress or poor quality of life were detected in the cohort as a whole. A small subset of participants reported higher levels of distress, suggesting the need for healthcare professionals offering PCa screening to identify these risk factors and offer additional information and support to men seeking PCa screening

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)

    Housing Needs Assessment Jacksonville, TX

    No full text
    The Jacksonville Housing Needs Assessment, a collaborative, year-long project between Texas Target Communities at Texas A&M University and several dedicated residents, situates the community’s housing challenges in the context of multiple sources of data, including consumers and producers of housing. The report documents the methods and analyses used to assess the City’s housing gaps and estimate its housing needs. Furthermore, it discusses the findings, implications, and recommendations developed by the two entities to address the City’s housing challenges. The chapters reflect the order of the process. The first chapter provides background details on community engagement and the origins of both the Housing Council of the Cherokee County Human Needs Network and the Housing Needs Assessment. The second chapter delves into Jacksonville’s demographic overview, while the third chapter addresses the City’s current housing inventory and conditions. The fourth chapter interweaves the second and third chapters’ findings to situate the City’s housing gaps and estimated housing needs. Finally, the fifth chapter proposes a series of recommendations for addressing housing challengesThe Jacksonville Housing Needs Assessment, a collaborative, year-long project between Texas Target Communities at Texas A&M University and several dedicated residents, situates the community’s housing challenges in the context of multiple sources of data, including consumers and producers of housing.Texas Target Communitie

    Housing Needs Assessment Jacksonville, TX

    No full text
    The Jacksonville Housing Needs Assessment, a collaborative, year-long project between Texas Target Communities at Texas A&M University and several dedicated residents, situates the community’s housing challenges in the context of multiple sources of data, including consumers and producers of housing. The report documents the methods and analyses used to assess the City’s housing gaps and estimate its housing needs. Furthermore, it discusses the findings, implications, and recommendations developed by the two entities to address the City’s housing challenges. The chapters reflect the order of the process. The first chapter provides background details on community engagement and the origins of both the Housing Council of the Cherokee County Human Needs Network and the Housing Needs Assessment. The second chapter delves into Jacksonville’s demographic overview, while the third chapter addresses the City’s current housing inventory and conditions. The fourth chapter interweaves the second and third chapters’ findings to situate the City’s housing gaps and estimated housing needs. Finally, the fifth chapter proposes a series of recommendations for addressing housing challengesThe Jacksonville Housing Needs Assessment, a collaborative, year-long project between Texas Target Communities at Texas A&M University and several dedicated residents, situates the community’s housing challenges in the context of multiple sources of data, including consumers and producers of housing.Texas Target Communitie
    corecore