5,777 research outputs found

    Charcoal reflectance reveals early Holocene boreal deciduous forests burned at high intensities

    Get PDF
    Published onlineJournal ArticleResearch Support, Non-U.S. Gov'tResearch Support, U.S. Gov't, Non-P.H.S.Wildfire size, frequency, and severity are increasing in the Alaskan boreal forest in response to climate warming. One of the potential impacts of this changing fire regime is the alteration of successional trajectories, from black spruce to mixed stands dominated by aspen, a vegetation composition not experienced since the early Holocene. Such changes in vegetation composition may consequently alter the intensity of fires, influencing fire feedbacks to the ecosystem. Paleorecords document past wildfire-vegetation dynamics and as such, are imperative for our understanding of how these ecosystems will respond to future climate warming. For the first time, we have used reflectance measurements of macroscopic charcoal particles (>180μm) from an Alaskan lake-sediment record to estimate ancient charring temperatures (termed pyrolysis intensity). We demonstrate that pyrolysis intensity increased markedly from an interval of birch tundra 11 ky ago (mean 1.52%Ro; 485°C), to the expansion of trees on the landscape ~10.5 ky ago, remaining high to the present (mean 3.54%Ro; 640°C) irrespective of stand composition. Despite differing flammabilities and adaptations to fire, the highest pyrolysis intensities derive from two intervals with distinct vegetation compositions. 1) the expansion of mixed aspen and spruce woodland at 10 cal. kyr BP, and 2) the establishment of black spruce, and the modern boreal forest at 4 cal. kyr BP. Based on our analysis, we infer that predicted expansion of deciduous trees into the boreal forest in the future could lead to high intensity, but low severity fires, potentially moderating future climate-fire feedbacks

    Initial Characterization of the FlgE Hook High Molecular Weight Complex of Borrelia burgdorferi

    Get PDF
    The spirochete periplasmic flagellum has many unique attributes. One unusual characteristic is the flagellar hook. This structure serves as a universal joint coupling rotation of the membrane-bound motor to the flagellar filament. The hook is comprised of about 120 FlgE monomers, and in most bacteria these structures readily dissociate to monomers (∼ 50 kDa) when treated with heat and detergent. However, in spirochetes the FlgE monomers form a large mass of over 250 kDa [referred to as a high molecular weight complex (HMWC)] that is stable to these and other denaturing conditions. In this communication, we examined specific aspects with respect to the formation and structure of this complex. We found that the Lyme disease spirochete Borrelia burgdorferi synthesized the HMWC throughout the in vitro growth cycle, and also in vivo when implanted in dialysis membrane chambers in rats. The HMWC was stable to formic acid, which supports the concept that the stability of the HMWC is dependent on covalent cross-linking of individual FlgE subunits. Mass spectrometry analysis of the HMWC from both wild type periplasmic flagella and polyhooks from a newly constructed ΔfliK mutant indicated that other proteins besides FlgE were not covalently joined to the complex, and that FlgE was the sole component of the complex. In addition, mass spectrometry analysis also indicated that the HMWC was composed of a polymer of the FlgE protein with both the N- and C-terminal regions remaining intact. These initial studies set the stage for a detailed characterization of the HMWC. Covalent cross-linking of FlgE with the accompanying formation of the HMWC we propose strengthens the hook structure for optimal spirochete motility

    Longitudinal Analysis of Adolescent Girls' Activity Patterns: Understanding the Influence of the Transition to Licensure

    Get PDF
    The proportion of teens and young adults with driver's licenses has declined sharply in many industrialized countries including the United States. Explanations for this decline have ranged from the introduction of graduated driver licensing programs to the increase in online social interaction. We used a longitudinal cohort study of teenage girls in San Diego and Minneapolis to evaluate factors associated with licensure and whether teens' travel patterns become more independent as they aged. We found that licensure depended not only on age, but on race and ethnicity as well as variables that correlate with household income. Results also showed evidence that teen travel became more independent as teen's age, and that acquiring a license is an important part of this increased independence. However, we found limited evidence that teen's travel-activity patterns changed as a result of acquiring a driver's license. Rather, teen independence resulted in less parental chauffeuring, but little shift in travel patterns. For the larger debate on declining Millennial mobility, our results suggest the need for more nuanced attention to variation across demographic groups and consideration of the equity implications if declines in travel and licensure are concentrated in low-income and minority populations

    Multiscale correlative tomography: an investigation of creep cavitation in 316 stainless steel

    Get PDF
    Creep cavitation in an ex-service nuclear steam header Type 316 stainless steel sample is investigated through a multiscale tomography workflow spanning eight orders of magnitude, combining X-ray computed tomography (CT), plasma focused ion beam (FIB) scanning electron microscope (SEM) imaging and scanning transmission electron microscope (STEM) tomography. Guided by microscale X-ray CT, nanoscale X-ray CT is used to investigate the size and morphology of cavities at a triple point of grain boundaries. In order to understand the factors affecting the extent of cavitation, the orientation and crystallographic misorientation of each boundary is characterised using electron backscatter diffraction (EBSD). Additionally, in order to better understand boundary phase growth, the chemistry of a single boundary and its associated secondary phase precipitates is probed through STEM energy dispersive X-ray (EDX) tomography. The difference in cavitation of the three grain boundaries investigated suggests that the orientation of grain boundaries with respect to the direction of principal stress is important in the promotion of cavity formation

    Introducing the Dirac-Milne universe

    Full text link
    The \Lambda CDM standard model, although an excellent parametrization of the present cosmological data, requires two as yet unobserved components, Dark Matter and Dark Energy, for more than 95% of the Universe. Faced to this unsatisfactory situation, we study an unconventional cosmology, the Dirac-Milne universe, a matter-antimatter symmetric cosmology, in which antimatter is supposed to present a negative active gravitational mass. The main feature of this cosmology is the linear evolution of the scale factor with time which directly solves the age and horizon problems of a matter-dominated universe. We study the concordance of this model to the cosmological test of Type Ia Supernov\ae\ distance measurements and calculate the theoretical primordial abundances of light elements for this cosmology. We also show that the acoustic scale of the Cosmic Microwave Background naturally emerges at the degree scale despite an open geometry.Comment: Replaced to match published versio

    Impulse control disorders in Parkinson and RBD:a longitudinal study of severity.

    Get PDF
    Objective To describe the prevalence, natural history, and risk factors for impulse control behaviors (ICBs) among people with Parkinson disease (PD), those with REM sleep behavior disorder (RBD), and controls. Methods Participants with early PD (within 3.5 years of diagnosis), those with RBD, and controls were clinically phenotyped and screened for ICBs longitudinally (with the Questionnaire for Impulsivity in Parkinson's Disease). ICB-positive individuals were invited for a semistructured interview, repeated 1 year later. The severity of the ICB was assessed with the Parkinson's Impulse Control Scale. Multiple imputation and regression models were used to estimate ICB prevalence and associations. Results Data from 921 cases of PD at baseline, 768 cases at 18 months, and 531 cases at 36 months were included, with 21% to 25% screening positive for ICBs at each visit. Interviews of ICB screen–positive individuals revealed that 10% met formal criteria for impulse control disorders (ICD), while 33% had subsyndromal ICD (ICB symptoms without reaching the formal diagnostic criteria for ICD). When these data were combined through the use of multiple imputation, the prevalence of PD-ICB was estimated at 19.1% (95% confidence interval 10.1–28.2). On follow-up, 24% of cases of subsyndromal ICD had developed full symptoms of an ICD. PD-ICD was associated with dopamine agonist use, motor complications, and apathy but not PD-RBD. ICD prevalence in the RBD group (1%) was similar to that in controls (0.7%). Conclusions ICBs occur in 19.1% of patients with early PD, many persisting or worsening over time. RBD is not associated with increased ICD risk. Psychosocial drivers, including mood and support networks, affect severity

    Deficiency of the metabolic enzyme SCHAD in pancreatic β-cells promotes amino acid–sensitive hypoglycemia

    Get PDF
    Congenital hyperinsulinism of infancy (CHI) can be caused by a deficiency of the ubiquitously expressed enzyme short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD). To test the hypothesis that SCHAD-CHI arises from a specific defect in pancreatic β-cells, we created genetically engineered β-cell-specific (β-SKO) or hepatocyte-specific (L-SKO) SCHAD knockout mice. While L-SKO mice were normoglycemic, plasma glucose in β-SKO animals was significantly reduced in the random-fed state, after overnight fasting, and following refeeding. The hypoglycemic phenotype was exacerbated when the mice were fed a diet enriched in leucine, glutamine, and alanine. Intraperitoneal injection of these three amino acids led to a rapid elevation in insulin levels in β-SKO mice compared to controls. Consistently, treating isolated β-SKO islets with the amino acid mixture potently enhanced insulin secretion compared to controls in a low-glucose environment. RNA sequencing of β-SKO islets revealed reduced transcription of β-cell identity genes and upregulation of genes involved in oxidative phosphorylation, protein metabolism, and Ca2+ handling. The β-SKO mouse offers a useful model to interrogate the intra-islet heterogeneity of amino acid sensing given the very variable expression levels of SCHAD within different hormonal cells, with high levels in β- and δ-cells and virtually absent α-cell expression. We conclude that the lack of SCHAD protein in β-cells results in a hypoglycemic phenotype characterized by increased sensitivity to amino acid-stimulated insulin secretion and loss of β-cell identity.publishedVersio

    Toll-Like Receptor 2 Signaling Protects Mice from Tumor Development in a Mouse Model of Colitis-Induced Cancer

    Get PDF
    Inflammatory bowel disease (IBD) is a disorder of chronic inflammation with increased susceptibility to colorectal cancer. The etiology of IBD is unclear but thought to result from a dysregulated adaptive and innate immune response to microbial products in a genetically susceptible host. Toll-like receptor (TLR) signaling induced by intestinal commensal bacteria plays a crucial role in maintaining intestinal homeostasis, innate immunity and the enhancement of intestinal epithelial cell (IEC) integrity. However, the role of TLR2 in the development of colorectal cancer has not been studied. We utilized the AOM-DSS model for colitis-associated colorectal cancer (CAC) in wild type (WT) and TLR2−/− mice. Colons harvested from WT and TLR2−/− mice were used for histopathology, immunohistochemistry, immunofluorescence and cytokine analysis. Mice deficient in TLR2 developed significantly more and larger colorectal tumors than their WT controls. We provide evidence that colonic epithelium of TLR2−/− mice have altered immune responses and dysregulated proliferation under steady-state conditions and during colitis, which lead to inflammatory growth signals and predisposition to accelerated neoplastic growth. At the earliest time-points assessed, TLR2−/− colons exhibited a significant increase in aberrant crypt foci (ACF), resulting in tumors that developed earlier and grew larger. In addition, the intestinal microenvironment revealed significantly higher levels of IL-6 and IL-17A concomitant with increased phospho-STAT3 within ACF. These observations indicate that in colitis, TLR2 plays a protective role against the development of CAC
    • …
    corecore