13 research outputs found

    Threshold of Toxicological Concern - an update for non-genotoxic carcinogens

    Get PDF
    The Threshold of Toxicological Concern (TTC) concept can be applied to organic compounds with known chemical structure to derive a threshold for exposure below which a toxic effect on human health by the compound is not expected. The TTC concept distinguishes between carcinogens that may act as genotoxic and non-genotoxic compounds. A positive prediction of a genotoxic mode of action, either by structural alerts or experimental data, leads to the application of the threshold value for genotoxic compounds. Non-genotoxic substances are assigned to the TTC value of their respective Cramer class even though it is recognized that they could test positive in a rodent cancer bioassay. This study investigated the applicability of the Cramer classes specifically to provide adequate protection for non-genotoxic carcinogens. For this purpose, benchmark dose levels based on tumour incidence were compared with no observed effect levels (NOEL) derived from non-, pre- or neoplastic lesions. One key aspect was the categorization of compounds as non-genotoxic carcinogens. The recently finished CEFIC LRI project B18 classified the carcinogens of the CPDB as either non- or genotoxic compounds based on experimental or in silico data. A detailed consistency check resulted in a data set of 137 non-genotoxic organic compounds. For these 137 compounds, NOEL values were derived from high quality animal studies with oral exposure and chronic duration using well known repositories including RepDose, ToxRef and COSMOS DB. Further, an effective tumour dose (ETD10) was calculated and compared to the lower confidence limit on benchmark dose levels (BMDL10) derived by model averaging. Comparative analysis of NOEL/EDT10/BMDL10 values showed that potentially bioaccumulative compounds in humans, as well as steroids, which both belong to the exclusion categories, occur predominantly in region of the 5th percentiles of the distributions. Excluding these 25 compounds resulted in significantly higher, but comparable 5th percentile chronic NOEL and BMDL10 values, while the 5th percentile EDT10 value was slightly higher, but not statistically significant. The comparison of the obtained distributions of NOELs with the existing Cramer classes and their derived TTC values supports the application of Cramer class thresholds to all non genotoxic compounds, including non_genotoxic carcinogens

    The German National Registry of Primary Immunodeficiencies (2012-2017)

    Get PDF
    Introduction: The German PID-NET registry was founded in 2009, serving as the first national registry of patients with primary immunodeficiencies (PID) in Germany. It is part of the European Society for Immunodeficiencies (ESID) registry. The primary purpose of the registry is to gather data on the epidemiology, diagnostic delay, diagnosis, and treatment of PIDs. Methods: Clinical and laboratory data was collected from 2,453 patients from 36 German PID centres in an online registry. Data was analysed with the software Stata® and Excel. Results: The minimum prevalence of PID in Germany is 2.72 per 100,000 inhabitants. Among patients aged 1–25, there was a clear predominance of males. The median age of living patients ranged between 7 and 40 years, depending on the respective PID. Predominantly antibody disorders were the most prevalent group with 57% of all 2,453 PID patients (including 728 CVID patients). A gene defect was identified in 36% of patients. Familial cases were observed in 21% of patients. The age of onset for presenting symptoms ranged from birth to late adulthood (range 0–88 years). Presenting symptoms comprised infections (74%) and immune dysregulation (22%). Ninety-three patients were diagnosed without prior clinical symptoms. Regarding the general and clinical diagnostic delay, no PID had undergone a slight decrease within the last decade. However, both, SCID and hyper IgE- syndrome showed a substantial improvement in shortening the time between onset of symptoms and genetic diagnosis. Regarding treatment, 49% of all patients received immunoglobulin G (IgG) substitution (70%—subcutaneous; 29%—intravenous; 1%—unknown). Three-hundred patients underwent at least one hematopoietic stem cell transplantation (HSCT). Five patients had gene therapy. Conclusion: The German PID-NET registry is a precious tool for physicians, researchers, the pharmaceutical industry, politicians, and ultimately the patients, for whom the outcomes will eventually lead to a more timely diagnosis and better treatment

    Best practice approach for assessment of microchip-associated tumors in preclinical safety studies: Position of the Registry of Industrial Toxicology Animal-data (RITA)

    No full text
    Microchip (passive radio-frequency identification device) implantation is a common and widely employed means of animal identification in laboratory animal facilities. However, these devices have been associated with tumors of the skin and subcutis in rodents. While microchip-associated tumors are rare, they pose a challenge for accurate diagnosis and documentation in preclinical toxicity studies. Documentation of these tumors should differentiate microchip-associated lesions with spontaneously occurring or test article–induced tumors. Standardizing criteria for microchip-associated lesions will aid the diagnostic process and allow for preclinical regulatory standardization. To this end, the Registry of Industrial Toxicology Animal-data have developed clear recommendations for diagnosis and documentation of microchip-associated lesions

    The effect of radiofrequency electromagnetic fields (RF-EMF) on biomarkers of oxidative stress in vivo and in vitro: A protocol for a systematic review

    No full text
    none14sìBackground: Oxidative stress is conjectured to be related to many diseases. Furthermore, it is hypothesized that radiofrequency fields may induce oxidative stress in various cell types and thereby compromise human and animal health. This systematic review (SR) aims to summarize and evaluate the literature related to this hypothesis. Objectives: The main objective of this SR is to evaluate the associations between the exposure to radiofrequency electromagnetic fields and oxidative stress in experimental models (in vivo and in vitro). Methods: The SR framework has been developed following the guidelines established in the WHO Handbook for Guideline Development and the Handbook for Conducting a Literature-Based Health Assessment). We will include controlled in vivo and in vitro laboratory studies that assess the effects of an exposure to RF-EMF on valid markers for oxidative stress compared to no or sham exposure. The protocol is registered in PROSPERO. We will search the following databases: PubMed, Embase, Web of Science Core Collection, Scopus, and the EMF-Portal. The reference lists of included studies and retrieved review articles will also be manually searched. Study appraisal and synthesis method: Data will be extracted according to a pre-defined set of forms developed in the DistillerSR online software and synthesized in a meta-analysis when studies are judged sufficiently similar to be combined. If a meta-analysis is not possible, we will describe the effects of the exposure in a narrative way. Risk of bias: The risk of bias will be assessed with the NTP/OHAT risk of bias rating tool for human and animal studies. We will use GRADE to assess the certainty of the conclusions (high, moderate, low, or inadequate) regarding the association between radiofrequency electromagnetic fields and oxidative stress. Funding: This work was funded by the World Health Organization (WHO). Registration: The protocol was registered on the PROSPERO webpage on July 8, 2021.noneHenschenmacher, Bernd; Bitsch, Annette; de Las Heras Gala, Tonia; Forman, Henry Jay; Fragoulis, Athanassios; Ghezzi, Pietro; Kellner, Rupert; Koch, Wolfgang; Kuhne, Jens; Sachno, Dmitrij; Schmid, Gernot; Tsaioun, Katya; Verbeek, Jos; Wright, RobertHenschenmacher, Bernd; Bitsch, Annette; de Las Heras Gala, Tonia; Forman, Henry Jay; Fragoulis, Athanassios; Ghezzi, Pietro; Kellner, Rupert; Koch, Wolfgang; Kuhne, Jens; Sachno, Dmitrij; Schmid, Gernot; Tsaioun, Katya; Verbeek, Jos; Wright, Rober

    Evaluation of immunohistochemical markers to detect the genotoxic mode of action of fine and ultrafine dusts in rat lungs

    Get PDF
    Data on local genotoxicity after particle exposure are crucial to resolve mechanistic aspects such as the impact of chronic inflammation, types of DNA damage, and their role in lung carcinogenesis. We established immunohistochemical methods to quantify the DNA damage markers poly(ADP-ribose) (PAR), phosphorylated H2AX (γ-H2AX), 8-hydroxyguanosine (8-OH-dG), and 8-oxoguanine DNA glycosylase (OGG1) in paraffin-embedded tissue from particle-exposed rats. The study was based on lungs from a subchronic study that was part of an already published carcinogenicity study where rats had been intratracheally instilled with saline, quartz DQ12, amorphous silica (Aerosil(®) 150), or carbon black (Printex(®) 90) at monthly intervals for 3 months. Lung sections were stained immunohistochemically and markers were quantified in alveolar lining cells. Local genotoxicity was then correlated with already defined endpoints, i.e. mean inflammation score, bronchoalveolar lavage parameters, and carcinogenicity. Genotoxicity was most pronounced in quartz DQ12-treated rats, where all genotoxicity markers gave statistically significant positive results, indicating considerable genotoxic stress such as occurrence of DNA double-strand breaks (DSB), and oxidative damage with subsequent repair activity. Genotoxicity was less pronounced for Printex(®) 90, but significant increases in γ-H2AX- and 8-OH-dG-positive nuclei and OGG1-positive cytoplasm were nevertheless detected. In contrast, Aerosil(®) 150 significantly enhanced only 8-OH-dG-positive nuclei and oxidative damage-related repair activity (OGG1) in cytoplasm. In the present study, γ-H2AX was the most sensitive genotoxicity marker, differentiating best between the three types of particles. The mean number of 8-OH-dG-positive nuclei, however, correlated best with the mean inflammation score at the same time point. This methodological approach enables integration of local genotoxicity testing in subchronic inhalation studies and makes immunohistochemical detection, in particular of γ-H2AX and 8-hydroxyguanine, a very promising approach for local genotoxicity testing in lungs, with prognostic value for the long-term outcome of particle exposure
    corecore