104 research outputs found

    VCAM-1 and VLA-4 Modulate Dendritic Cell IL-12p40 Production in Experimental Visceral Leishmaniasis

    Get PDF
    Vascular cell adhesion molecule-1 (VCAM-1) interacts with its major ligand very late antigen-4 (VLA-4) to mediate cell adhesion and transendothelial migration of leukocytes. We report an important role for VCAM-1/VLA-4 interactions in the generation of immune responses during experimental visceral leishmaniasis caused by Leishmania donovani. Our studies demonstrate that these molecules play no direct role in the recruitment of leukocytes to the infected liver, but instead contribute to IL-12p40-production by splenic CD8+ dendritic cells (DC). Blockade of VCAM-1/VLA-4 interactions using whole antibody or anti-VCAM-1 Fab′ fragments reduced IL-12p40 mRNA accumulation by splenic DC 5 hours after L. donovani infection. This was associated with reduced anti-parasitic CD4+ T cell activation in the spleen and lowered hepatic IFNγ, TNF and nitric oxide production by 14 days post infection. Importantly, these effects were associated with enhanced parasite growth in the liver in studies with either anti-VCAM-1 or anti-VLA-4 antibodies. These data indicate a role for VCAM-1 and VLA-4 in DC activation during infectious disease

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Deletion of Wntless in myeloid cells exacerbates liver fibrosis and the ductular reaction in chronic liver injury

    Get PDF
    Background: Macrophages play critical roles in liver regeneration, fibrosis development and resolution. They are among the first responders to liver injury and are implicated in orchestrating the fibrogenic response via multiple mechanisms. Macrophages are also intimately associated with the activated hepatic progenitor cell (HPC) niche or ductular reaction that develops in parallel with fibrosis. Among the many macrophage-derived mediators implicated in liver disease progression, a key role for macrophage-derived Wnt proteins in driving pro-regenerative HPC activation towards a hepatocellular fate has been suggested. Wnt proteins, in general, however, have been associated with both pro-and anti-fibrogenic activities in the liver and other organs. We investigated the role of macrophage-derived Wnt proteins in fibrogenesis and HPC activation in murine models of chronic liver disease by conditionally deleting Wntless expression, which encodes a chaperone essential for Wnt protein secretion, in LysM-Cre-expressing myeloid cells (LysM-Wls mice)

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling

    No full text
    Macrophage-colony stimulating factor (CSF-1) signaling through its receptor (CSF-1R) promotes the differentiation of myeloid progenitors into heterogeneous populations of monocytes, macrophages, dendritic cells, and bone-resorbing osteoclasts. In the periphery, CSF-1 regulates the migration, proliferation, function, and survival of macrophages, which function at multiple levels within the innate and adaptive immune systems. Macrophage populations elicited by CSF-1 are associated with, and exacerbate, a broad spectrum of pathologies, including cancer, inflammation, and bone disease. Conversely, macrophages can also contribute to immunosuppression, disease resolution, and tissue repair. Recombinant CSF-1, antibodies against the ligand and the receptor, and specific inhibitors of CSF-1R kinase activity have been each been tested in a range of animal models and in some cases, in patients. This review examines the potential clinical uses of modulators of the CSF-1/CSF-1R system. We conclude that CSF-1 promotes a resident-type macrophage phenotype. As a treatment, CSF-1 has therapeutic potential in tissue repair. Conversely, inhibition of CSF-1R is unlikely to be effective in inflammatory disease but may have utility in cancer

    The biology of graft-versus-host disease: experimental systems instructing clinical practice

    No full text
    The last 6 decades have seen major advances in the understanding of immunologic diseases, driven by preclinical animal models. Indeed, bone marrow transplantation (BMT) has its genesis in rodent models dating back to the 1950s. Allogeneic BMT and its major complication, graft-versus-host disease (GVHD), represent a paradigm for the translation of preclinical concepts into clinical practice. The appreciation that GVHD can be thought of as a stepwise escalation in immune activation characterized by eventual massive target tissue apoptosis has allowed the design of rational approaches to better manage patients. Here, we describe the pathophysiology of GVHD as defined in preclinical models, focusing on the successes and failures of this research to instruct and translate clinical practice. We also provide a commentary on the limitations of these models so that they may be better appreciated and addressed in future studies. Notable preclinical successes include the definition of modern immune suppression, reductions in conditioning intensity, posttransplant cyclophosphamide, and the promotion of regulatory T-cell reconstitution. New strategies including naïve T-cell depletion, focused cytokine and chemokine inhibition, and the blockade of costimulation now also appear highly promising and very likely to translate into patients in the near future

    Chronic graft-versus-host disease: biological insights from preclinical and clinical studies

    No full text
    With the increasing use of mismatched, unrelated, and granulocyte colony-stimulating factor-mobilized peripheral blood stem cell donor grafts and successful treatment of older recipients, chronic graft-versus-host disease (cGVHD) has emerged as the major cause of non relapse mortality and morbidity. cGVHD is characterized by lichenoid changes and fibrosis that affects a multitude of tissues, compromising organ function. Beyond steroids, effective treatment options are limited. Thus, new strategies to both prevent and treat disease are urgently required. Over the last 5 years, our understanding of cGVHD pathogene-sis and basic biology, born out of a combination of mouse models and correlative clinical studies, has radically improved. We now understand that cGVHD is initiated by naive T cells, differentiating predominantly with in highly inflammatory T-helper 17/T-cytotoxic 17 and T-follicular helper paradigms with consequentthymic damage and impaired donor antigen presentation in the periphery. This leads to aberrant T- and B-cell activation and differentiation, which cooperate to generate antibody-secreting cells that cause the deposition of antibodies to polymorphic recipient antigens (ie, alloantibody) or nonpolymorphic antigens common to both recipient and donor (ie, autoantibody). It is now clear that alloantibody can, in concert with colony-stimulating factor 1 (CSF-1)-dependent donor macrophages, induce a transforming growth factor β-high environment locally within target tissue that results in scleroderma and bronchiolitis obliterans, diagnostic features of cGVHD. These findings have yielded a raft of potential new therapeutics, centered on naive T-cell depletion, interleukin-17/21 inhibition, kinase inhibition, regulatory T-cell restoration, and CSF-1 inhibition. This new understanding of cGVHD finally gives hope that effective therapies are imminent for this devastating transplant complication
    corecore