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Abbreviations list

BID Twice daily
BO Bronchiolitis obliterans
cGVHD chronic graft versus host disease
EAE Experimental autoimmune encephalitis
GC Germinal center
GVL Graft versus Leukemia
Ig Immunoglobulin
KO Knock out
IL Interleukin
OCT Optimum cutting temperature
PC Plasma cell
PFT                 Pulmonary function test
PI3K Phosphoinositide-3-kinase
SD Standard deviation
Teff Teffector cells
TCD T cell depleted
TGF-β     Transforming growth factor- beta
Th T helper
Tfh T follicular helper
Treg T regulatory
Tfr T follicular regulatory
WT Wild type
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Abstract 

Chronic graft-versus-host disease is a leading cause of morbidity and mortality following 

allotransplant. Activated donor effector T-cells can differentiate into pathogenic T helper (Th)-17 cells 

and germinal center -promoting Tfollicular helper cells, resulting in cGVHD.  Phosphoinositide-3-

kinase-δ, a lipid kinase, is critical for activated T-cell survival, proliferation, differentiation, and 

metabolism. We demonstrate PI3Kδ activity in donor T-cells that become Tfhs is required for cGVHD 

in a non-sclerodermatous multi-organ system disease model that includes bronchiolitis obliterans, 

dependent upon GC B-cells, Tfhs, and counterbalanced by Tfollicular regulatory cells, each requiring 

PI3Kδ signaling for function and survival. Although B-cells rely on PI3Kδ pathway signaling and GC 

formation is disrupted resulting in a substantial decrease in Ig production, PI3Kδ kinase-dead mutant 

donor bone marrow derived GC B-cells still supported BO cGVHD generation. A PI3Kδ-specific 

inhibitor, compound GS-649443 that has superior potency to idelalisib while maintaining selectivity, 

reduced cGVHD in mice with active disease. In a Th1-dependent and Th17-associated scleroderma 

model, GS-649443 effectively treated mice with active cGVHD. These data provide a foundation for 

clinical trials of FDA-approved PI3Kδ inhibitors for cGVHD therapy in patients.
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Introduction

Graft-versus-host disease (GVHD) is a major obstacle for allogeneic hematopoietic stem cell transplant 

patients, greatly impacting their quality of life. GVHD is a primary cause of mortality, second only to 

primary disease relapse. Chronic GVHD (cGVHD) is a leading cause of morbidity, occurring in 20-

70% of aHSCT patients1,2. CGVHD clinical presentations are varied and virtually every organ in the 

body can be affected; amongst the more severe outcomes are cGVHD of the lung, manifesting as 

bronchiolitis obliterans (BO) and skin as scleroderma3. Due to this broad and varied pathogenesis, 

multiple murine models have been developed to recapitulate a larger portion of the disease spectrum4-6. 

A common feature among models and in patients is the driving role of chronically stimulated 

alloreactive Teffs in disease pathogenesis3,7. Activated alloreactive donor CD4+ T-cells differentiate 

into Tfollicular helper (Tfh) and IL-17-producing helper T-cells (Th17s)  that have known pathogenic 

roles in cGVHD4,8-10.

Tfh cells are a specialized CD4+ Th cell subset that provide essential signals to support germinal center 

(GC) B-cell, memory B-cell or antibody-producing plasma cell (PC) development11-13. A subpopulation 

of T regulatory (Treg), Tfollicular regulatory (Tfr) cells, suppress Tfh and GC B-cells to regulate the 

GC reaction14.  Immunoglobulin (Ig) produced by PCs and deposited in target tissues, such as the lung, 

liver, and colon contributes to organ damage in BO cGVHD and skin in the scleroderma model15. We 

previously reported that Tfh and GC B-cells are required for the development of murine BO cGVHD, a 

model that recapitulates many aspects of human cGVHD pathology, with the predominant exception of 

scleroderma15-19. In this BO cGVHD model, weight loss and mortality are low (around or less than 

20%). Th17 cells, a source of the pro-inflammatory cytokine IL-17 that contributes to autoimmunity20, 

are also involved in BO as well as our sclerodermatous model of cGVHD21,22. 

Page 6 of 36

amjtransplant@duke.edu

American Journal of Transplantation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



CONFIDENTIAL

6

Phosphoinositide-3-kinases (PI3Ks) are a family of lipid kinases that that regulate numerous signaling 

cascades via the phosphorylation of 3-hydroxyl group of phosphatidylinositol lipid substrates23. 

Structural and substrate preferences divide the PI3Ks into three classes (I, II, III)24.  Within the class I 

PI3Ks, present in all cell types, there are several isoforms, each comprised of regulatory and catalytic 

subunit heterodimers23. The p110δ catalytic subunit, referred to as PI3Kδ, is an isoform preferentially 

expressed in leukocytes, regulating immune cell signalling25,26. PI3Kδ is activated upon T-cell receptor 

engagement, CD28 costimulation, and cytokine receptor signaling to sustain an activated Teff 

phenotype and promote the function of these cells, including regulation of survival, cell cycle 

progression, differentiation and metabolism27-30. Loss of PI3Kδ diminishes Teffector (Teff) activity31,32. 

Relevant to our models of cGVHD, PI3Kδ signaling has been found to be necessary for both murine 

and human IL-17 production32-34. Recent work has demonstrated that PI3Kδ mutant T-cells have 

impaired alloimmune activity and that PI3Kδ inhibition was able to effectively suppress alloreactive 

Teffs to prevent solid organ heart transplant rejection35. In non-chronic models of GVHD, PI3Kδ 

inhibition ameliorated lethality and reduced severity of clinical signs and organ damage36,37. 

Similar to its role in immune cells, PI3K signaling controls proliferation, survival and metabolism of 

cancer cells. Certain hematological malignancies have been found to have upregulated PI3Kδ 

activity38,39. Idelalisib is a PI3Kδ specific inhibitor that has been approved to treat hematological 

malignancies, such as chronic lymphocytic leukemia, follicular lymphoma (that can be of GC B- or T- 

cell origin) and small lymphocytic lymphoma40,41. While demonstrating therapeutic benefit, there are 

also concerning toxicities associated with Idelalisib, including hepatotoxicity, diarrhea/colitis, 

pneumonitis and intestinal perforation. Due to these off target effects, efforts are being made to develop 

Page 7 of 36

amjtransplant@duke.edu

American Journal of Transplantation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



CONFIDENTIAL

7

new drugs. One such compound utilized here is GS-649443, a PI3Kδ isoform-specific inhibitor that has 

demonstrated superior potency to idelalisib while maintaining selectivity42,43. In vitro and in vivo 

studies demonstrated that this inhibitor reduces inflammatory cytokines, including IFNγ and IL-1743,44. 

The role of PI3Kδ in the pathophysiology of cGVHD is unknown and deserves investigation in order to 

develop new therapeutics to treat steroid-resistant or refractory cGVHD. In this study, we sought to 

determine the requirement of PI3Kδ function in cGVHD pathogenesis. We show that donor T-cells 

deficient for PI3Kδ activity are unable to induce cGVHD. Further, we demonstrate that the PI3Kδ 

specific inhibitor, GS-649443, used for treatment of ongoing cGVHD, diminished the GC reaction and 

antibody production in BO cGVHD. GS-649443 was also efficacious in sclerodermatous cGVHD 

model, reducing pro-inflammatory IL-17 production. Together, these results provide basic mechanistic 

insights regarding cGVHD pathophysiology and pre-clinical support for testing of PI3Kδ inhibitors as a 

therapeutic strategy for steroid-refractory or resistant cGVHD.
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Materials and Methods

Mice

C57Bl/6 (B6, H2b) and Balb/c (H2d) mice were purchased from the National Cancer Institute. B10.BR 

(H2k) and B10.D2 (H2d) mice were purchased from Jackson Laboratory. Mice were housed in a 

specific-pathogen-free facility used with the approval of the University of Minnesota’s animal care 

committee. To explore the effects of PI3Kδ loss in donor cells in cGVHD, we used bone marrow (BM) 

and/or splenocytes from catalytically inactive p110δD910A/D910A (further referred to as p110δD910) 

homozygous mutant45 and p110δD910A/WT (wildtype) heterozygous mutant mice, shipped overnight from 

Drs. Amy Johnson, Klaus Okkenhaug, Anne-Katrien Stark, and Bart Vanhaesebroeck.

Bone Marrow Transplantation

For the BO cGVHD, B10.BR recipients were conditioned with cyclophosphamide (Sigma St. Louis, 

M)) 120mg/kg/day intraperitoneally, on days -3 and -2, and TBI 8.3 Gy, day -1. Recipients then 

received 10 x 106 B6 T-cell-depleted (TCD) BM only or with 7.5 x 104 purified splenic T-cells 

(cGVHD). For the B10.D2Balb/c scleroderma model, Balb/c recipients were conditioned with TBI, 7 

Gy, day -1 and then received 10 x 106 B10.D2 TCD BM only or with 1.8 x 106 CD4 and 0.9 x 106 CD8 

T-cells on day 022,46,47. Mice were monitored daily for survival and weighed twice weekly. In the 

scleroderma model, mice were assessed twice weekly for clinical and cutaneous GVHD, as previously 

described48. 

Pulmonary Function Tests

Pulmonary function tests (PFTs) were performed as previously described49. Briefly, mice were 

anesthetized with Nembutal, intubated and ventilated using the Flexivent system (Scireq Montreal, 
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QC). Pulmonary resistance, elastance and compliance were reported using Flexivent software version 

7. We observe that cGVHD controls have increased pulmonary resistance and elastance along with 

decreased compliance as compared to BM only controls in our BO cGVHD model15. 

PI3Kδ Inhibition

GS-64944342, provided by Gilead, was delivered in a vehicle consisting of 10% Ethanol, 20% 

cremophor EL and 70% normal saline. Mice were given GS-649443 (10mg/kg) twice daily (BID) by 

oral gavage from days 28-56 (BO model) or days 21-50 (scleroderma model). Mice in the vehicle 

control group were treated with the same volume of vehicle.

Histopathology and Immunostaining

Tissue sections were embedded in Optimal Cutting Temperature (OCT) compound, snap-frozen in 

liquid nitrogen and stored at -80C. Lungs were inflated by 75% OCT before harvest and freezing. For 

Trichrome staining, 6-m cryosections were fixed overnight in Bouin’s solution and stained with 

Masson’s Trichrome staining kit (Sigma HT15). Collagen deposition was quantified as a ratio of blue 

area to total area using ImageJ. For Histopathology, acetone-fixed 6-m cryosections were hemotoxylin 

and eosin stained and evaluated50 without knowledge of treatment by APM. For immunoglobulin 

deposition immunostainng, acetone-fixed 6um cryosections were stained with goat anti-mouse IgG 

(BD55401). Confocal images were acquired on Olympus Confocal Laser Scanning Microscope at 20X 

and quantified by ImageJ.

Statistical Analysis 
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GraphPad Prism 7 was used to conduct statistical analysis. One-way ANOVA with Bonferroni 

correction and Student’s t-test were used for statistical analysis as indicated. Error bars indicate mean ± 

standard deviation (SD). Significance: *P<.05;**P<.01;***P.001;****P<.0001.

Results

Fully intact donor T-cell PI3Kδ activity is essential for BO cGVHD generation

The prominent contribution of PI3Kδ activity to T-cell survival and function prompted us to determine 

whether donor T- cells with decreased or absent PI3Kδ kinase activity would fail to cause cGVHD in 

the BO model. T cells from p110δD910A/wt mice that have a knock-in mutation in one allele leading to 

heterozygote levels of catalytically inactive, mutant PI3Kδ were given to a cohort of mice and 

compared to BM only and cGVHD controls.  Mice receiving WT BM and either heterozygous 

p110δD910A/wt or WT T-cells had ≥90% survival and ≤5% weight loss compared to day 0 body weights 

(not shown). BO cGVHD pulmonary dysfunction was comparable to WT T cell controls (Figure S1). 

Next, we asked if PI3Kδ activity in donor BM was required for cGVHD. Homozygous p110δD910A BM 

with WT T-cells still resulted in pulmonary dysfunction consistent with cGVHD (Figure 1A). As 

compared to cGVHD only controls, mice receiving p110δD910A BM with WT T-cells had significantly 

lower Treg and Tfr frequencies (Figure 1B-C). Tfh frequencies in mice that received p110δD910A BM 

with WT T-cells were reduced from that of the cGVHD but still increased from their BM only control.  

An unfavorable Tfr:Tfh ratio, similar to that of the cGVHD control (Figure 1D-E), was observed. Since 

the magnitude of antibody responses, that originate in the GC, can be functionally predicted by the 

Tfr/Tfh ratio in a wide range of diseases in both mice and humans14, the low Tfr:Tfh ratio associated 

with an increased GC B-cell frequency (Figure 1F) was anticipated. Lung pathology scores correlated 
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with pulmonary function tests, with WT BM only compared to WT BM plus supplemental WT T-cells 

(0.1 ± 0.1 vs 2 ± 0.1581, p= <0.001) and p110δD910A BM compared to p110δD910A BM WT T-cells (0.2 

± 0.1225 vs 0.8 ± 0.255, p= 0.067)(data not shown). Whereas the statistical difference between the first 

two groups was significant, statistical comparison in the histopathology scores between the recipients 

receiving p110δD910A BM only reached a statistical trend. These latter data suggest either a modest 

effect of the KO BM on altering cGVHD severity or sample size limitations. Infusion of p110δD910A/wt 

T-cells with p110δD910A/wt BM cells did not avert cGVHD pulmonary dysfunction (Figure S1).  

Since haploinsufficient T-cells and BM cells did not have evidence of reduced cGVHD, we proceeded 

to studies using homozygous p110δD910A T-cells. We hypothesized that donor T-cells lacking all PI3Kδ 

kinase activity would be inferior in inducing and sustaining cGVHD as compared to their WT 

counterparts. We observed no significant changes in weight or survival between cGVHD controls and 

mice that received p110δD910A donor T-cells (Figure S2A-B). Mice that received p110δD910A donor T-

cells did not develop pulmonary dysfunction associated with BO cGVHD (Figure 2A). Loss of PI3Kδ 

activity resulted in a significant decrease in the frequency of splenic Tfh cells (Figure 2B) with 

unaltered Treg (Figure S2C) and Tfr frequencies (Figure 2C). We observed an increased Tfr:Tfh ratio 

(Figure 2D) and decreased GC B cell frequencies (Figure 2E) in mice that received p110δD910A versus 

WT donor T cells, consistent with studies demonstrating that the ratio of Tfr:Tfh controls the GC 

reaction51. As expected by the significant improvement in pulmonary function parameters, recipients of 

p110δD910A donor T cells had significantly reduced histopathology scores (Figure 2F). T cells and BM 

cells that had haplosufficient PI3Kδ expression did not provide adequate protection from cGVHD, 

suggesting that high level PI3Kδ inhibition will be required to treat cGVHD in the clinic.
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Therapeutic administration of GS-649443 ameliorates cGVHD in a non-sclerodermatous, BO 

model 

To validate if PI3Kδ can be targeted as a novel therapeutic strategy, we tested the novel PI3Kδ 

inhibitor, GS-649443, in our BO model of cGVHD. GS-649443 given at 10mg/kg, PO, BID beginning 

on day 28, the time of established cGVHD15, was well-tolerated as shown by weight and survival 

curves (Figure S3A, B). Treatment at a lower dose of 5mg/kg, PO, BID did not improve pulmonary 

function (Figure S4). Vehicle treatment alone had no significant effect on cGVHD outcome for any 

parameters tested. GS-649443 improved PFTs (Figure 3A), reduced the lung pathology associated with 

cGVHD (Figure 3B) and decreased Tfhs (Figure 3C) frequencies. Both the Treg (Figure S3C) as well 

as Tfr (Figure 3D) frequencies were decreased by GS-649443 treatment. Although the Tfr:Tfh ratio was 

similar to that of the vehicle controls (Figure 3E), the GC B-cell frequency in GS-649443 treated mice 

was significantly decreased (Figure 3F). Together, these data point to either to a direct effect of GS-

649443 on GC B-cells and/or reduction of Tfh frequency below threshold limits to cause a GC 

response.

Reduced Ig and collagen lung deposition in GS-649443-treated mice phenocopies findings in 

recipients given p110δD910A donor T-cells 

cGVHD has several autoimmune-like features, including but not limited to the deposition of antibodies 

and fibrosis of target organs, including the lung52. In accordance with improved PFTs and immune 

analysis, we demonstrated that lung IgG (Figure 4A) and collagen deposition (Figure 4B) was 

decreased in mice that received WT BM plus p110δD910A donor T-cells. Mice that received GS-649443 

treatment also had reduced lung IgG and collagen deposition (Figure 4). 
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Therapeutic administration of the PI3Kδ-specific inhibitor GS-649443 ameliorates 

sclerodermatous cGVHD 

A major clinical and histopathological manifestation absent from the multi-organ system BO cGVHD 

model is scleroderma53. We utilized a multiple minor histocompatibility mismatch model 

(B10.D2BALB/c) that presents with a cutaneous cGVHD and associated increased Th17 Teffs and 

systemic inflammatory response22. GS-649443 treatment significantly improved skin and clinical 

scores of mice (Figure 5A-B). GS-649443 treatment decreased IL-17+ T-cell frequency (Figure 5C), 

characteristic of cGVHD in this model and IL-17+IFNγ+ double positive cells (Figure S5A), which can 

contribute to autoimmunity22,54. IFNγ+ T-cells remained increased in mice treated with GS-649443 

(Figure S5B) indicating potentially only a partial amelioration of disease. Nonetheless, decreased IL-

17-producing T-cells resulted in correspondingly lower, although not quite significant, IgG deposition 

in the skin of scleroderma mice (Figure S5C). 

Page 14 of 36

amjtransplant@duke.edu

American Journal of Transplantation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



CONFIDENTIAL

14

Discussion

PI3Kδ is a key regulator of Teff function, found here to be required for cGVHD development. Here, we 

have demonstrated that cGVHD generated in distinct murine models that simulate several, but not all, 

cGVHD manifestations, are dependent upon PI3Kδ activity. We demonstrated that PI3Kδ activity in 

donor T-cells but not B-cells is necessary to initiate and/or sustain the GC response critical for cGVHD 

in the BO model. We utilized the PI3Kδ isoform-specific inhibitor GS-649443 to show that PI3Kδ 

inhibition is effective in treating ongoing, established cGVHD in both the BO and sclerodermatous 

models. Overall, our data show that the PI3Kδ signaling pathway is required to generate and maintain 

murine cGVHD in two, independent models with distinct pathophysiology and few overlapping 

cGVHD manifestations.

PI3Kδ has roles in Teffs and other immune cell types, notably B-cells, Tregs and macrophages. Mice 

lacking functional PI3Kδ exhibit B-cell defects. Such mice have fewer mature B-cells, reduced B-cell 

receptor-induced proliferation, decreased B-cell differentiation into antibody-producing cells, 

substantially reduced Ig production and disrupted GCs in response to antigen challenge45,55,56. 

Interestingly, p110δD910A BM with WT T-cells still induced pulmonary dysfunction that was 

significantly worse than their p110δD910A BM only counterpart. The magnitude of the GC B-cells was 

sufficient to induce pulmonary dysfunction. Because Tregs also reside in the BM, p110δD910A BM 

would produce Tregs or Tfrs defective in suppressing Tfhs that may have contributed to GC B-cell 

driven pulmonary dysfunction. Related to this possibility, PI3Kδ signaling supports Treg development 

and function. We previously showed Tregs and Tfrs are critical in controlling GC reactions and 

cGVHD57 and that PI3Kδ inhibition results in diminished in vitro and in vivo suppressor function and 

Treg survival31,35. Indeed, both the Treg and Tfr populations were decreased in mice that received 
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p110δD910A BM alone or with T-cells. The resulting overall unfavorable Tfr:Tfh ratio creates an 

environment in the B-cell follicle permissive for an increased GC B-cell frequency14. In this study, we 

observed decreased Tfr and GC B-cell frequencies associated with the therapeutic benefit of GS-

649443 treatment.   

Macrophages are known to be key mediators of several types of inflammatory immune responses, 

including those culminating in fibrosis. Indeed, macrophages were proven to be a source of 

Transforming Growth Factor-beta (TFG-β), a mediator of tissue fibrosis21. Macrophage depletion21 

or inhibition of macrophage migratory capacity58 precluded the generation of cGVHD in both the BO 

and scleroderma models. Optimal macrophage function has been associated with various PI3K 

isoforms, including PI3Kβ, PI3Kδ and PI3Kγ40 and in particular PI3Kδ has been shown to inhibit 

macrophage migration59. Although the improvement in cGVHD outcome with GS-649443 correlated 

with a reduction in GC reaction, decreased macrophage migration may have contributed to disease 

amelioration. Such may occur by a direct effect by PI3Kδ inhibition on donor macrophage function or 

indirectly inhibit macrophage migration as a consequence of low GCs, Ig deposition in cGVHD organs 

and subsequently lower levels of macrophage chemoattractants. Further studies will be required to 

determine how PI3Kδ affects macrophage migration and function in the context of cGVHD. Additional 

studies are needed to determine whether altered Tfr/Tfh, reduced Th17 cell as seen in the scleroderma 

model, or impaired macrophage migration are the dominant or critical mechanism(s) of by which 

PI3Kδ inhibition ameliorates cGVHD BO. 

Increased PI3Kδ signaling has been found in autoimmune diseases60 and has been of interest for 

therapeutics in autoimmune and inflammatory disease mouse models. In models of experimental 
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autoimmune encephalitis (EAE), PI3Kδ mutant mice were noted to have a defective Th17 response and 

reduced disease severity34. PI3Kδ inhibition slowed disease progression and organ damage in a murine 

model of systemic lupus erythematous, an autoimmune disease with T- and B- cell involvement similar 

to several immunological abnormalities associated with cGVHD61. Loss of PI3Kδ activity improved 

outcomes in multiple sclerosis, rheumatoid arthritis, psoriasis and autoimmune (type 1) diabetes 

models40. We observed similar results with PI3Kδ inhibition in cGVHD models studied here, including 

decreased damage to the lung, Ig deposition and IL-17. Of note, prior in vitro assays have shown that 

pharmacologic pan-PI3K inhibition was more effective than more selective inhibition of p110δ alone 

for preventing differentiation of Th1 cells, as determined by IFNγ production; in contrast, IL-17 was 

completely blocked by both inhibitor types34. Moreover, p110δD910A mice had greater reduction in Th17 

compared to Th1 responses in an EAE model34. While cytokines were not directly measured in our BO 

cGVHD, previously we have reported that IL-17 contributes to cGVHD in the BO model, as 

demonstrated by the lack of cGVHD using RORC deficient T cells and reversal of established disease 

using small molecule RORt inhibitors or neutralizing anti-IL-17 mAb treatment10. 

In addition to regulation of IL-17 production, sustained PI3Kδ activation has been found to be 

necessary for optimal IFNγ production32. In the scleroderma model, inhibition of the δ isoform with 

GS-649443 did not impact the frequencies of IFNγ expressing donor T-cells. These data are however 

consistent with the reduced efficacy in IFN suppression seen in CD8+ T cell later after TCR 

stimulation. Importantly, our data indicate that IFN inhibition alone is not essential for reducing 

disease severity. In the cGVHD BO model, the role of IFNγ in mediating disease has not been 

elucidated. However, in acute GVHD models, the lack of donor IFNγ production increased pulmonary 
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GVHD and GVL responses, while reducing GI GVHD62. Thus, we do not favor the explanation that 

reduced IFNγ production by PI3Kδ inhibition is fundamentally important for cGVHD with BO.

A sizable population of allo-BMT patients have a hematological malignancy, many of whom will 

develop cGVHD and hence are potential candidates for PI3Kδ treatment for post-BMT relapse and/or 

cGVHD. Because donor T-cells are principal protectors against relapse providing the beneficial graft-

versus-leukemia (GVL) response63, the GVL response could be diminished by PI3Kδ inhibition in 

cGVHD patients in whom PI3Kδ activity is not a driving force in malignancy. However, for many 

cGVHD patients, especially those with long-standing disease, the GVL effect already may have 

eliminated residual malignant cells by the time that therapy would begin and for patients with steroid-

resistant or refractory cGVHD, profound immune suppression may subvert existing GVL responses. 

Future studies will need to be conducted to determine how inhibition of PI3Kδ will impact on GVL and 

other immune function in the context of cGVHD treatment. 

Several important issues remain to be addressed. For example, PI3K signaling is involved in many 

different aspects of immunity and therefore inhibition could impact immune reconstitution. The impact 

of this therapy on cells of the immune system will be an important consideration going forward. GS-

649443 ameliorated cGVHD in both the BO and scleroderma models, treatment was initiated at early 

times after disease establishment. The efficacy of PI3Kδ inhibition in patients with steroid-refractory or 

advanced cGVHD remains to be determined. While the toxicities associated with PI3Kδ inhibitors are 

of concern for future therapeutic applications, structural modifications, such as the one utilized in this 

study, offer the promise to decrease off target effects related with treatment and improve the 

historically poor outcome of cGVHD patients failing to respond to steroids. Nonetheless, careful 

pharmacological toxicology studies must be performed given the potential broader implications of 
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PI3Kδ inhibition on systems beyond immunity and inflammation. Lastly, the potential broader off target 

effects of GS-649443 on other PI3K isoforms and other kinases for those drugs destined for clinical 

applications deserve thorough exploration.

In conclusion, these results demonstrate that PI3Kδ activity is necessary for the development of 

cGVHD in murine models. We have demonstrated that targeting PI3Kδ can result in a decreased GC 

reaction. Inhibiting PI3Kδ improved cGVHD disease outcome by reducing pathogenic Tfh/GC B-cells 

resulting in decreased antibody and collagen deposition in the lungs. PI3Kδ inhibition is also able to 

decrease inflammatory cytokines associated with cGVHD. These studies add to current knowledge of 

application of PI3Kδ inhibition for disease treatment and present support for targeting PI3Kδ for 

cGVHD therapy.
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Figure Legend

Figure 1. Mice receiving p110δD910A BM develop cGVHD

B10.BR mice were conditioned with Cytoxan and TBI and infused with BM alone or with WT purified 

splenic T-cells (cGVHD) along with mice receiving p110δD910A BM alone or with WT T-cells. (A) Day 

56PFTs show that mice that received p110δD910A BM with WT T cells still developed BO comparable 

to cGVHD controls. (B-C) The frequency of splenic Tregs and Tfr demonstrate that these populations 

are reduced in Tfh both groups that received p110δD910A BM. (D) The splenic Tfh frequency was 

decreased in p110δD910A BM supplemented with T-cell group compared to the cGVHD control. (E) The 

Tfh frequency was still increased from the p110δD910A BM resulting in a Tfr:Tfh ratio similar to that of 

the cGVHD control. (F) The frequency of splenic GC B-cells were decreased in mice that received the 

p110δD910A T cells compared to cGVHD control but still increased from p110δD910A BM. A-E Data are 

from 2 pooled, independent experiments, with 5-7 mice per group per experiment. In F data are 

representative from 1 experiment. Data shown with mean ± SD. One-way ANOVA with Bonferroni 

correction for multiple comparisons used with significance: *P> .05; **P> .01; ***P> .001.

Figure 2. PI3Kδ is necessary in donor T-cells for cGVHD development

B10.BR mice were conditioned with Cytoxan and TBI and infused with BM alone or with WT purified 

splenic T-cells (cGVHD) or catalytically inactive T-cells. (A) Pulmonary function tests performed on 

day 56 show that the p110δD910A T cells did not induce BO cGVHD. (B) The frequency of splenic Tfh 

was decreased in mice that received the p110δD910A T cells. The Tfr frequency was not changed among 

any of the groups (C), however the Tfr:Tfh ratio was significantly improved (D). (E) The frequency of 

splenic GC B-cells was also decreased in mice that received p110δD910A T cells (F) Hemotoxylin and 

eosin staining of lungs show that mice receiving p110δD910A T-cells had had improved histopathology. 
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Data are representative of 2 independent experiments with similar result with 4-5 mice per group, 

shown with mean ± SD. Student’s t-test was used when comparing two groups with significance: *P> 

.05; **P> .01; ***P> .001.

Figure 3. Therapeutic administration of PI3Kδ specific inhibitor GS-649443 ameliorates disease 

in a non-sclerodermatous, BO model of cGVHD

B10.BR mice were conditioned with Cytoxan and TBI received BM alone or with B6 purified splenic 

T-cells (cGVHD) treated mice received vehicle or PI3Kδ specific inhibitor GS-649443 (10mg/kg/BID) 

beginning on day 28 after transplant. (A) Day 56 PFTs show that GS-649443 improved lung function 

of cGVHD mice. (B) Hemotoxylin and eosin staining of lungs show that mice treated with the inhibitor 

had improved histopathology. (C) The frequency of splenic Tfh was significantly decreased in mice 

treated with GS-649443. (D) These mice still had reduced frequency of Tfr cells and the ratio of 

Tfr:Tfh was not improved (E). (F) The frequency of splenic GC B cells was significantly reduced in 

mice treated with GS-649443. A and F are pooled from 3 independent experiments. B-E are pooled 

from 2 independent experiments, with 4-6 mice per group per experiment. Data are shown with mean ± 

SD. One-way ANOVA with Bonferroni correction for multiple comparisons used with significance: 

*P> .05; **P> .01; ***P> .001. 

Figure 4. Histopathology and immunoglobulin (Ig) deposition of GS-649443 treated mice 

phenocopies mice that received p110δD910A donor T-cells

Transplant set up was the same as figures 2 and 3. (A) Representative images of Ig deposition staining. 

Ig deposition was quantified in ImageJ. (B) Representative images of Masson’s Trichrome staining. 

Collagen was identified as area stained blue and quantified using ImageJ indicating decreased collagen 
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deposited in the lungs of mice that received p110δD910A T-cells and mice treated with GS-649443. Data 

are from one experiment with 3-5 mice per group, shown with mean ± SD. One-way ANOVA with 

Bonferroni correction for multiple comparisons used with significance: *P> .05; **P> .01; ***P> .001.

Figure 5. Therapeutic administration of the PI3Kδ specific inhibitor GS-649443 ameliorates 

sclerodermatous cGVHD 

Balb/c mice received TBI and received WT B10.D2 BM alone (BM only) or with 1.8 x 106 CD4+ and 

0.9 x 106 CD8+ T-cells. Treatment groups received PI3Kδ specific inhibitor GS-649443 

(10mg/kg/BID) starting at day 21. (A) Mice treated with GS-649443 had improved skin scores. (B) GS-

649443 improved clinical scores in treated mice. Analysis of lymph nodes taken at day 50 post-

transplant, each sample is pooled from 2 mice, with 8-12 mice per group (C) Mice treated with GS-

649443 had reduced IL-17 frequency. (D) IL-17 and IFNγ double positive population frequency were 

also decreased. (E) IFNγ positive population frequency was not decreased with treatment. (F) 

Representative images of Ig deposition in the skin of mice treated with GS-649443 quantified using 

ImageJ (G). Data in (A) is pooled data from two independent experiments, (B-C) are representative 

from 2 independent experiments. Data are shown with mean ± SD. Student’s t-test was used with 

significance: *P> .05; **P> .01; ***P> .001.

Supporting Information

Additional supporting information may be found online in the Supporting Information section at the 

end of this article. 
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Supporting Information

Figure S1. Heterozygous p110δD910A/WT cells still induce pulmonary dysfunction associated with 

cGVHD

Transplant set up the same as figure 2, with additional groups of mice receiving WT BM with 

p110δD910A/WT T-cells, p110dD910A PI3Kδ BM alone or with WT T cells, and p110δD910A/WT BM and 

T-cells. Day 56 PFTs show that mice that one functional copy of PI3Kδ in donor BM or T-cells paired 

with WT BM or T-cells is sufficient for causing disease however, one copy in donor BM and donor T-

cells had a modest effect on pulmonary outcome. Data are representative from one experiment, with 4-6 

mice per group. Data are shown with mean ± SD. Significance: *P> .05; **P> .01; ***P> .001.

Figure S2. Weight, survival and Treg frequency of mice that received p110δD910A donor T-cells 

was not significantly changed from cGVHD mice

(A) Weights and (B) survival from mice that received p110δD910A donor T-cells was not significantly 

changed from mice that received WT BM supplemented with WT donor T-cells. (C) Treg population is 

not changed in mice that received p110δD910A donor T-cells. Data are representative from two 

independent experiments, with 8-10 mice per group. 

Figure S3. Therapeutic administration of PI3Kδ specific inhibitor GS-649443 did not 

significantly impact weight and survival, however Treg frequency was decreased

B10.BR mice were conditioned with Cytoxan and TBI received BM alone or with B6 purified splenic 

T-cells (cGVHD) treated mice received vehicle or PI3Kδ specific inhibitor GS-649443 (10mg/kg/BID) 

beginning on day 28 after transplant. (A-B) Weight and survival curves of transplanted mice 
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2

demonstrate that GS-649443 did not have toxic effect. Data are pooled from three independent 

experiments, with 8-10 mice per group. (C) Treg population is significantly decreased in mice that 

received GS-649443 compared to vehicle control. 

Figure S4. Therapeutic administration of PI3Kδ specific inhibitor GS-649443 at 5mg/kg does not 

reduce pulmonary dysfunction associated with BO model of cGVHD

Conditioned mice received BM alone (BM only) or supplemented with purified splenic T cells. Mice 

were treated with vehicle or the PI3Kδ specific inhibitor GS-649443 (5mg/kg/BID) beginning on day 

28 after transplant. (A) Day 56 PFTs show that GS-649443 improved lung function of cGVHD mice. 

Data are representative of 2 independent experiments, with 7-9 mice per group, shown with mean ± SD. 

Significance: *P> .05; **P> .01; ***P> .001

Figure S5. Therapeutic administration of the PI3Kδ specific inhibitor GS-649443 reduced 

inflammatory cell subsets as well as Ig deposition in skin

Balb/c mice received TBI and received WT B10.D2 BM alone (BM only) or with 1.8 x 106 CD4+ and 

0.9 x 106 CD8+ T-cells. Treatment groups received PI3Kδ specific inhibitor GS-649443 

(10mg/kg/BID) starting at day 21. A-B Analysis of lymph nodes taken at day 50 post-transplant, each 

sample is pooled from 2 mice, with 8-12 mice per group. (A) IL-17 and IFNγ double positive 

population frequency was decreased with treatment however IFNγ positive population frequency was 

not reduced (B). (C) Representative images of Ig deposition in the skin of mice treated with GS-649443 

quantified using ImageJ. Data is representative from 2 independent experiments. Data are shown with 

mean ± SD. Student’s t-test was used with significance: *P> .05; **P> .01; ***P> .001.
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