51 research outputs found
Harnessing Repetitive Behaviours to Engage Attention and Learning in a Novel Therapy for Autism: An Exploratory Analysis
Rigorous, quantitative examination of therapeutic techniques anecdotally reported to have been successful in people with autism who lack communicative speech will help guide basic science toward a more complete characterisation of the cognitive profile in this underserved subpopulation, and show the extent to which theories and results developed with the high-functioning subpopulation may apply. This study examines a novel therapy, the “Rapid Prompting Method” (RPM). RPM is a parent-developed communicative and educational therapy for persons with autism who do not speak or who have difficulty using speech communicatively. The technique aims to develop a means of interactive learning by pointing amongst multiple-choice options presented at different locations in space, with the aid of sensory “prompts” which evoke a response without cueing any specific response option. The prompts are meant to draw and to maintain attention to the communicative task – making the communicative and educational content coincident with the most physically salient, attention-capturing stimulus – and to extinguish the sensory–motor preoccupations with which the prompts compete. Video-recorded RPM sessions with nine autistic children ages 8–14 years who lacked functional communicative speech were coded for behaviours of interest. An analysis controlled for age indicates that exposure to the claimed therapy appears to support a decrease in repetitive behaviours and an increase in the number of multiple-choice response options without any decrease in successful responding. Direct gaze is not related to successful responding, suggesting that direct gaze might not be any advantage for this population and need not in all cases be a precondition to communication therapies
T Cell Receptor-Like Recognition of Tumor In Vivo by Synthetic Antibody Fragment
A major difficulty in treating cancer is the inability to differentiate between normal and tumor cells. The immune system differentiates tumor from normal cells by T cell receptor (TCR) binding of tumor-associated peptides bound to Major Histocompatibility Complex (pMHC) molecules. The peptides, derived from the tumor-specific proteins, are presented by MHC proteins, which then serve as cancer markers. The TCR is a difficult protein to use as a recombinant protein because of production issues and has poor affinity for pMHC; therefore, it is not a good choice for use as a tumor identifier outside of the immune system. We constructed a synthetic antibody-fragment (Fab) library in the phage-display format and isolated antibody-fragments that bind pMHC with high affinity and specificity. One Fab, fE75, recognizes our model cancer marker, the Human Epidermal growth factor Receptor 2 (HER2/neu) peptide, E75, bound to the MHC called Human Leukocyte Antigen-A2 (HLA-A2), with nanomolar affinity. The fE75 bound selectively to E75/HLA-A2 positive cancer cell lines in vitro. The fE75 Fab conjugated with 64Cu selectively accumulated in E75/HLA-A2 positive tumors and not in E75/HLA-A2 negative tumors in an HLA-A2 transgenic mouse as probed using positron emission tomography/computed tomography (PET/CT) imaging. Considering that hundreds to thousands of different peptides bound to HLA-A2 are present on the surface of each cell, the fact that fE75 arrives at the tumor at all shows extraordinary specificity. These antibody fragments have great potential for diagnosis and targeted drug delivery in cancer
Genome-Wide Hypomethylation in Head and Neck Cancer Is More Pronounced in HPV-Negative Tumors and Is Associated with Genomic Instability
Loss of genome-wide methylation is a common feature of cancer, and the degree of hypomethylation has been correlated with genomic instability. Global methylation of repetitive elements possibly arose as a defense mechanism against parasitic DNA elements, including retrotransposons and viral pathogens. Given the alterations of global methylation in both viral infection and cancer, we examined genome-wide methylation levels in head and neck squamous cell carcinoma (HNSCC), a cancer causally associated with human papilloma virus (HPV). We assayed global hypomethylation levels in 26 HNSCC samples, compared with their matched normal adjacent tissue, using Pyrosequencing-based methylation assays for LINE repeats. In addition, we examined cell lines derived from a variety of solid tumors for LINE and SINE (Alu) repeats. The degree of LINE and Alu hypomethylation varied among different cancer cell lines. There was only moderate correlation between LINE and Alu methylation levels, with the range of variation in methylation levels being greater for the LINE elements. LINE hypomethylation was more pronounced in HPV-negative than in HPV-positive tumors. Moreover, genomic instability, as measured by genome-wide loss-of-heterozygosity (LOH) single nucleotide polymorphism (SNP) analysis, was greater in HNSCC samples with more pronounced LINE hypomethylation. Global hypomethylation was variable in HNSCC. Its correlation with both HPV status and degree of LOH as a surrogate for genomic instability may reflect alternative oncogenic pathways in HPV-positive versus HPV-negative tumors
Structural Analysis of a Repetitive Protein Sequence Motif in Strepsirrhine Primate Amelogenin
Strepsirrhines are members of a primate suborder that has a distinctive set of features associated with the development of the dentition. Amelogenin (AMEL), the better known of the enamel matrix proteins, forms 90% of the secreted organic matrix during amelogenesis. Although AMEL has been sequenced in numerous mammalian lineages, the only reported strepsirrhine AMEL sequences are those of the ring-tailed lemur and galago, which contain a set of additional proline-rich tandem repeats absent in all other primates species analyzed to date, but present in some non-primate mammals. Here, we first determined that these repeats are present in AMEL from three additional lemur species and thus are likely to be widespread throughout this group. To evaluate the functional relevance of these repeats in strepsirrhines, we engineered a mutated murine amelogenin sequence containing a similar proline-rich sequence to that of Lemur catta. In the monomeric form, the MQP insertions had no influence on the secondary structure or refolding properties, whereas in the assembled form, the insertions increased the hydrodynamic radii. We speculate that increased AMEL nanosphere size may influence enamel formation in strepsirrhine primates
The Earth BioGenome Project 2020: Starting the clock.
© The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lewin, H. A., Richards, S., Lieberman Aiden, E., Allende, M. L., Archibald, J. M., Bálint, M., Barker, K. B., Baumgartner, B., Belov, K., Bertorelle, G., Blaxter, Mark L., Cai, J., Caperello, N. D., Carlson, K., Castilla-Rubio, J. C., Chaw, S-M., Chen, L., Childers, A. K., Coddington, J. A., Conde, D. A., Corominas, M., Crandall, K. A., Crawford, A. J., DiPalma, F., Durbin, R., Ebenezer, T. E., Edwards, S. V., Fedrigo, O., Flicek, P., Formenti, G., Gibbs, R. A., Gilbert, M. Thomas P., Goldstein, M. M., Graves, J. M., Greely, H. T., Grigoriev, I. V., Hackett, K. J., Hall, N., Haussler, D., Helgen, K. M., Hogg, C. J., Isobe, S., Jakobsen, K. S., Janke, A., Jarvis, E. D., Johnson, W. E., Jones, S. J. M., Karlsson, E. K., Kersey, P. J., Kim, J-H., Kress, W. J., Kuraku, S., Lawniczak, M. K. N., Leebens-Mack, J. H., Li, X., Lindblad-Toh, K., Liu, X., Lopez, J. V., Marques-Bonet, T., Mazard, S., Mazet, J. A. K., Mazzoni, C. J., Myers, E. W., O’Neill, R. J., Paez, S., Park, H., Robinson, G. E., Roquet, C., Ryder, O. A., Sabir, J. S. M., Shaffer, H. B., Shank, T. M., Sherkow, J. S., Soltis, P. S., Tang, B., Tedersoo, L., Uliano-Silva, M., Wang, K., Wei, X., Wetzer, R., Wilson, J. L., Xu, X., Yang, H., Yoder, A. D., Zhang, G. The Earth BioGenome Project 2020: starting the clock. Proceedings of the National Academy of Sciences of the United States of America, 119(4), (2022): e2115635118, https://doi.org/10.1073/pnas.2115635118.November 2020 marked 2 y since the launch of the Earth BioGenome Project (EBP), which aims to sequence all known eukaryotic species in a 10-y timeframe. Since then, significant progress has been made across all aspects of the EBP roadmap, as outlined in the 2018 article describing the project’s goals, strategies, and challenges (1). The launch phase has ended and the clock has started on reaching the EBP’s major milestones. This Special Feature explores the many facets of the EBP, including a review of progress, a description of major scientific goals, exemplar projects, ethical legal and social issues, and applications of biodiversity genomics. In this Introduction, we summarize the current status of the EBP, held virtually October 5 to 9, 2020, including recent updates through February 2021. References to the nine Perspective articles included in this Special Feature are cited to guide the reader toward deeper understanding of the goals and challenges facing the EBP
Recommended from our members
T Cell Receptor-Like Recognition of Tumor <i>In Vivo</i> by Synthetic Antibody Fragment
A major difficulty in treating cancer is the inability to differentiate between normal and tumor cells. The immune system differentiates tumor from normal cells by T cell receptor (TCR) binding of tumor-associated peptides bound to Major Histocompatibility Complex (pMHC) molecules. The peptides, derived from the tumor-specific proteins, are presented by MHC proteins, which then serve as cancer markers. The TCR is a difficult protein to use as a recombinant protein because of production issues and has poor affinity for pMHC; therefore, it is not a good choice for use as a tumor identifier outside of the immune system. We constructed a synthetic antibody-fragment (Fab) library in the phage-display format and isolated antibody-fragments that bind pMHC with high affinity and specificity. One Fab, fE75, recognizes our model cancer marker, the Human Epidermal growth factor Receptor 2 (HER2/neu) peptide, E75, bound to the MHC called Human Leukocyte Antigen-A2 (HLA-A2), with nanomolar affinity. The fE75 bound selectively to E75/HLA-A2 positive cancer cell lines in vitro. The fE75 Fab conjugated with 64Cu selectively accumulated in E75/HLA-A2 positive tumors and not in E75/HLA-A2 negative tumors in an HLA-A2 transgenic mouse as probed using positron emission tomography/computed tomography (PET/CT) imaging. Considering that hundreds to thousands of different peptides bound to HLA-A2 are present on the surface of each cell, the fact that fE75 arrives at the tumor at all shows extraordinary specificity. These antibody fragments have great potential for diagnosis and targeted drug delivery in cancer.</p
- …