15 research outputs found

    M + Ng Potential Energy Curves Including Spin-orbit Coupling for M = K, Rb, Cs and Ng = He, Ne, Ar

    Get PDF
    X2Σ+1/2 ⁠, A2Π1/2, A2Π3/2, and B2Σ+1/2 potential energy curves and associated dipole matrix elements are computed for M + Ng at the spin-orbit multi-reference configuration interaction level, where M = K, Rb, Cs and Ng = He, Ne, Ar. Dissociation energies and equilibrium positions for all minima are identified and corresponding vibrational energy levels are computed. Difference potentials are used together with the quasistatic approximation to estimate the position of satellite peaks of collisionally broadened D2 lines. The comparison of potential energy curves for different alkali atom and noble gas atom combinations is facilitated by using the same level of theory for all nine M + Ng pairs

    Analytic Non-adiabatic Derivative Coupling Terms for Spin-orbit MRCI Wavefunctions. I. Formalism

    Get PDF
    Analytic gradients of electronic eigenvalues require one calculation per nuclear geometry, compared to at least 3n + 1 calculations for finite difference methods, where n is the number of nuclei. Analytic nonadiabatic derivative coupling terms (DCTs), which are calculated in a similar fashion, are used to remove nondiagonal contributions to the kinetic energy operator, leading to more accurate nuclear dynamics calculations than those that employ the Born-Oppenheimer approximation, i.e., that assume off-diagonal contributions are zero. The current methods and underpinnings for calculating both of these quantities, gradients and DCTs, for the State-Averaged MultiReference Configuration Interaction with Singles and Doubles (MRCI-SD) wavefunctions in COLUMBUS are reviewed. Before this work, these methods were not available for wavefunctions of a relativistic MRCI-SD Hamiltonian. Calculation of these terms is critical in successfully modeling the dynamics of systems that depend on transitions between potential energy surfaces split by the spin-orbit operator, such as diode-pumped alkali lasers. A formalism for calculating the transition density matrices and analytic derivative coupling terms for such systems is presented

    The generality of the GUGA MRCI approach in COLUMBUS for treating complex quantum chemistry

    Get PDF
    The core part of the program system COLUMBUS allows highly efficient calculations using variational multireference (MR) methods in the framework of configuration interaction with single and double excitations (MR-CISD) and averaged quadratic coupled-cluster calculations (MR-AQCC), based on uncontracted sets of configurations and the graphical unitary group approach (GUGA). The availability of analytic MR-CISD and MR-AQCC energy gradients and analytic nonadiabatic couplings for MR-CISD enables exciting applications including, e.g., investigations of π-conjugated biradicaloid compounds, calculations of multitudes of excited states, development of diabatization procedures, and furnishing the electronic structure information for on-the-fly surface nonadiabatic dynamics. With fully variational uncontracted spin-orbit MRCI, COLUMBUS provides a unique possibility of performing high-level calculations on compounds containing heavy atoms up to lanthanides and actinides. Crucial for carrying out all of these calculations effectively is the availability of an efficient parallel code for the CI step. Configuration spaces of several billion in size now can be treated quite routinely on standard parallel computer clusters. Emerging developments in COLUMBUS, including the all configuration mean energy multiconfiguration self-consistent field method and the graphically contracted function method, promise to allow practically unlimited configuration space dimensions. Spin density based on the GUGA approach, analytic spin-orbit energy gradients, possibilities for local electron correlation MR calculations, development of general interfaces for nonadiabatic dynamics, and MRCI linear vibronic coupling models conclude this overview

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    MULTIREFERENCE BOND LENGTHS OF SMALL MOLECULES: COMPARISON TO SINGLE-REFERENCE METHODS AND EXPERIMENT

    No full text
    Author Institution: Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL, 60439; High Performance Technologies, Inc., 2435 5th St., WPAFB, Ohio, 45433Using multi-reference methods and basis set extrapolations, we calculated the equilibrium bond lengths of 20 small molecules used in previous systematic studies of bond lengths computed using single-reference methods. We compare our computed bond lengths with those from the single-reference methods and with empirical equilibrium bond lengths. We find that the valence correlation from generalized valence bond MCSCF calculations improves the accuracy of the bond lengths relative to SCF. The MCSCF bonds tend to be too long compared to experiment, while the SCF bonds tend to be too short. Adding correlation in the form of singles and doubles CI to the MCSCF wave function produces bond lengths that agree well with empirically-derived and CCSD(T) bond lengths

    Analytic Non-adiabatic Derivative Coupling Terms for Spin-orbit MRCI Wavefunctions. II. Derivative coupling terms and coupling angle for KHe (A2Π1/2) ⇔ KHe B2ς1/2)

    Get PDF
    A method for calculating the analytic nonadiabatic derivative coupling terms (DCTs) for spin-orbit multi-reference configuration interaction wavefunctions is reviewed. The results of a sample calculation using a Stuttgart basis for KHe are presented. Additionally, the DCTs are compared with a simple calculation based on the Nikitin’s 3 × 3 description of the coupling between the Σ and Π surfaces, as well as a method based on Werner’s analysis of configuration interaction coefficients. The nonadiabatic coupling angle calculated by integrating the radial analytic DCTs using these different techniques matches extremely well. The resultant nonadiabatic energy surfaces for KHe are presented

    Analytic non-adiabatic derivative coupling terms for spin-orbit MRCI wavefunctions. I. Formalism

    No full text
    Analytic gradients of electronic eigenvalues require one calculation per nuclear geometry, compared to at least 3n + 1 calculations for finite difference methods, where n is the number of nuclei. Analytic nonadiabatic derivative coupling terms (DCTs), which are calculated in a similar fashion, are used to remove nondiagonal contributions to the kinetic energy operator, leading to more accurate nuclear dynamics calculations than those that employ the Born-Oppenheimer approximation, i.e., that assume off-diagonal contributions are zero. The current methods and underpinnings for calculating both of these quantities, gradients and DCTs, for the State-Averaged MultiReference Configuration Interaction with Singles and Doubles (MRCI-SD) wavefunctions in COLUMBUS are reviewed. Before this work, these methods were not available for wavefunctions of a relativistic MRCI-SD Hamiltonian. Calculation of these terms is critical in successfully modeling the dynamics of systems that depend on transitions between potential energy surfaces split by the spin-orbit operator, such as diode-pumped alkali lasers. A formalism for calculating the transition density matrices and analytic derivative coupling terms for such systems is presented

    Analytic non-adiabatic derivative coupling terms for spin-orbit MRCI wavefunctions. II. Derivative coupling terms and coupling angle for KHeA2Π1/2⇔KHeB2Σ1/2

    No full text
    A method for calculating the analytic nonadiabatic derivative coupling terms (DCTs) for spin-orbit multi-reference configuration interaction wavefunctions is reviewed. The results of a sample calculation using a Stuttgart basis for KHe are presented. Additionally, the DCTs are compared with a simple calculation based on the Nikitin’s 3 × 3 description of the coupling between the Σ and Π surfaces, as well as a method based on Werner’s analysis of configuration interaction coefficients. The nonadiabatic coupling angle calculated by integrating the radial analytic DCTs using these different techniques matches extremely well. The resultant nonadiabatic energy surfaces for KHe are presented
    corecore