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ABSTRACT
A method for calculating the analytic nonadiabatic derivative coupling terms (DCTs) for spin-orbit multi-reference configuration interaction
wavefunctions is reviewed. The results of a sample calculation using a Stuttgart basis for KHe are presented. Additionally, the DCTs are
compared with a simple calculation based on the Nikitin’s 3 × 3 description of the coupling between the Σ and Π surfaces, as well as a method
based on Werner’s analysis of configuration interaction coefficients. The nonadiabatic coupling angle calculated by integrating the radial
analytic DCTs using these different techniques matches extremely well. The resultant nonadiabatic energy surfaces for KHe are presented.

https://doi.org/10.1063/1.5126801., s

I. INTRODUCTION

Collisionally induced changes to states split by the spin-orbit
interaction are of importance in calculating the dynamics of many
systems, including Diode-Pumped Alkali Lasers (DPALs) in which
alkali metals interact with noble gasses to produce laser radia-
tion.1–5 In such cases, the application of the Born-Oppenheimer
approximation to separate the nuclear and electronic Hamilto-
nian is insufficient to appropriately model system dynamics. The
coupling between electronic and nuclear states is quantified by
nonadiabatic derivative coupling terms (DCTs) and the resul-
tant off-diagonal energy coupling surface.6,7 We are thus moti-
vated to calculate DCTs for M + Ng systems, where M = K,
Rb, or Cs and Ng = He, Ne, or Ar,8,9 in which this coupling
occurs strongly between states separated only by the spin-orbit
energy.

In a DPAL, alkali atoms in vapor are pumped to the 2P3/2 state,
which then are de-excited to the 2P1/2 by collision with a buffer gas,
typically a noble gas or hydrocarbon. Lasing then takes place as the
alkali atoms radiatively decay to the 2S1/2 state. In order to prop-
erly model the collisional de-excitation and understand the methods
available to enhance the population inversion, the calculation of the
nonadiabatic potential energy surfaces is required.10

In this paper, we explore the DCTs, resultant coupling angle,
and nonadiabatic potential energy surfaces of one of these sys-
tems, KHe. We are primarily focused on the radial derivative cou-
plings, i.e., those that arise from change in the distance between the
K and He nuclei. Lewis has explored the angular derivative cou-
plings and their connection to the Coriolis coupling elsewhere.11

KHe was chosen because of its relative simplicity for speedy cal-
culations and the availability of a spin-orbit potential. Additionally,
experiments have shown KHe to be a promising DPAL candidate.12
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FIG. 1. K He MRCI energy surfaces.

Energy surfaces for the first three excited states of KHe are shown in
Fig. 1.

In order to calculate these DCTs, we apply the formalism
outlined in Paper I,13 as implemented in COLUMBUS14–16 and
NWCHEM,17 to KHe. Additionally, a method based on Nikitin’s
3 × 3 method18 developed by Lewis11 is reviewed and compared.
Finally, a parsimonious method devised by Werner19 and employed
by Alexander20,21 is applied and compared.

II. CALCULATIONS OF DERIVATIVE COUPLING TERMS
AND ADIABATIC MIXING ANGLE
A. Method 1: Direct analytic calculation of DCTs

In this method, DCTs for KHe are calculated analytically in the
modified COLUMBUS and NWCHEM programs using a Stuttgart
basis set.22,23 In addition to the DCTs we explore here, Belcher has
shown that the modified density matrices correctly predict the multi-
reference configuration interaction (MRCI) energies, and the modi-
fied energy gradients agree well with finite-difference methods.12

As a transition term, DCTs suffer an additional complexity
that nontransition quantities do not. Each MRCI wavefunction may
have an arbitrary phase factor, which does not affect the energy
expectation value or its gradient. Let

∣ψ′I⟩ = e−iθ∣ψI⟩. (1)

Then, for an operator Â,

⟨ψ′I ∣Â∣ψ′I⟩ = eiθ⟨ψI ∣Âe−iθ∣ψI⟩

= eiθe−iθ⟨ψI ∣Âe−iθ∣ψI⟩
= ⟨ψI ∣Â∣ψI⟩, (2)

and so the phase factor is superfluous in this case. If we instead con-
sider a transition property between different wavefunctions, we find
that the phase does indeed matter

⟨ψ′I ∣Â∣ψ′J⟩ = eiθI ⟨ψI ∣Âe−iθJ ∣ψJ⟩

= eiθI e−iθJ ⟨ψI ∣Â e−iθ∣ψJ⟩

= ei(θI−θJ)⟨ψI ∣Â∣ψJ⟩. (3)

Since COLUMBUS only uses real wavefunctions, the arbitrary phase
is limited to ±1, but it will still require careful deliberation, especially
as the DCTs change sign (e.g., a nonsmooth “bounce” off an axis may
indicate that the DCT actually smoothly traverses the axis).

In addition to the arbitrary phase angle, there will also be an
arbitrary mixing angle between degenerate wavefunctions. Due to
Kramer’s theorem, odd-electron systems will always have doubly
degenerate wavefunctions. In order to work within the formalism of
Yabushita et al.,24 a noninteracting ghost electron is added to odd-
electron systems in COLUMBUS, doubling the degeneracy again,
creating a quadruple-degeneracy. Radial derivative couplings will
only occur between states such that the z-component of the total
spin, mj, and the z-component of the ghost electron’s spin, ms ghost ,
are preserved. Nevertheless, due to the degeneracy, the four elec-
tronic wavefunctions that COLUMBUS converges upon for either
surface will be an arbitrary mixture of the four pure states, which do
not mix those quantities,

∣Σi
1/2⟩ =

4

∑
j=1
∣Σ′j1/2⟩⟨Σ

′j
1/2∣Σ

i
1/2⟩ (4)

(with a symmetric definition for the ∣Πi
1/2⟩ states), where the

unprimed wavefunctions are the arbitrary mixtures with 1 ≤ i ≤ 4
and the primed wavefunctions are the pure canonical states, each j
representing a specific pairing of mj and ms ghost . Because of this mix-
ing, a given calculated DCT, ⟨Σi

1/2∣ ∂∂R ∣Π
j
1/2⟩, does not carry all the

information about the canonical DCT, ⟨Σ′i1/2∣ ∂∂R ∣Π
′i
1/2⟩. We can nev-

ertheless obtain the true DCT in the following manner. Consider the
sum square of all DCTs involving the electronic wavefunction ∣Σi

1/2⟩,

∑
j
∥⟨Σi

1/2∣ ∂∂R ∣Π
j
1/2⟩∥

2

= −∑
j
⟨Σi

1/2∣ ∂∂R ∣Π
j
1/2⟩⟨Π

j
1/2∣

∂
∂R ∣Σ

i
1/2⟩

= − ∑
j,k,l,m,n

⟨Σi
1/2∣Σ′k1/2⟩⟨Σ′k1/2∣ ∂∂R ∣Π

′l
1/2⟩⟨Π′l1/2∣Π

j
1/2⟩

× ⟨Πj
1/2∣Π

′m
1/2⟩⟨Π′m1/2∣ ∂∂R ∣Σ

′n
1/2⟩⟨Σ′n1/2∣Σi

1/2⟩. (5)

Since the pure states only have DCTs when mj and ms ghost are
preserved, this collapses the sums over l and n,

∑
j
∥⟨Σi

1/2∣ ∂∂R ∣Π
j
1/2⟩∥

2

= − ∑
j,k,m
⟨Σi

1/2∣Σ′k1/2⟩⟨Σ′k1/2∣ ∂∂R ∣Π
′k
1/2⟩⟨Π′k1/2∣Π

j
1/2⟩

× ⟨Πj
1/2∣Π

′m
1/2⟩⟨Π′m1/2∣ ∂∂R ∣Σ

m
1/2⟩⟨Σm

1/2∣Σi
1/2⟩. (6)

Rearranging, we have

∑
j
∥⟨Σi

1/2∣ ∂∂R ∣Π
j
1/2⟩∥

2

= −∑
k,m
⟨Σ′k1/2∣ ∂∂R ∣Π

′k
1/2⟩⟨Π′m1/2∣ ∂∂R ∣Σ

′m
1/2⟩

× ⟨Σi
1/2∣Σk

1/2⟩⟨Σ′m1/2∣Σi
1/2⟩∑

j
⟨Π′k1/2∣Π

j
1/2⟩⟨Π

j
1/2∣Π

′m
1/2⟩. (7)
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This last sum over j is replaced with δk ,m, leaving us with

∑
j
∥⟨Σi

1/2∣ ∂∂R ∣Π
j
1/2⟩∥

2

= −∑
k
⟨Σ′k1/2∣ ∂∂R ∣Π

′k
1/2⟩⟨Π′k1/2∣ ∂∂R ∣Σ

′k
1/2⟩

× ⟨Σi
1/2∣Σ′k1/2⟩⟨Σ′k1/2∣Σi

1/2⟩

= ∑
k
∥⟨Σ′k1/2∣ ∂∂R ∣Π

′k
1/2⟩∥

2
⟨Σi

1/2∣Σ′k1/2⟩⟨Σ′k1/2∣Σi
1/2⟩. (8)

With nothing in the Hamiltonian to discriminate otherwise, we
assert that the DCTs between any pair of electronic wavefunc-
tions from these two spaces, which preserve mj and msghost must
be of equal magnitude (the example below will serve to bolster this

assertion). Then, Eq. (8) tells us that

¿
ÁÁÀ∑

j
∥⟨Σi

1/2∣
∂
∂R ∣Π

j
1/2⟩∥

2
=
√
∥⟨Σ′k1/2∣

∂
∂R ∣Π′k1/2⟩∥

2
, (9)

that is, the norm of the canonical DCT is the root sum square
of the mixed DCTs, involving any single electronic wavefunction
∣Σi

1/2⟩ with all electronic wavefunctions ∣Πj
1/2⟩ (the argument is

equally valid for the DCTs of a single wavefunction ∣Πi
1/2⟩ with

all ∣Σj
1/2⟩).

From the four ∣Π1/2⟩ wavefunctions to the four ∣Σ1/2⟩ wave-
functions, there are a total of 16 different DCTs, represented within
the matrix,

p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⟨Π1
1/2∣ ∂

∂RΣ
1
1/2⟩ ⟨Π1

1/2∣ ∂
∂RΣ

2
1/2⟩ ⟨Π1

1/2∣ ∂
∂RΣ

3
1/2⟩ ⟨Π1

1/2∣ ∂
∂RΣ

4
1/2⟩

⟨Π2
1/2∣ ∂

∂RΣ
1
1/2⟩ ⟨Π2

1/2∣ ∂
∂RΣ

2
1/2⟩ ⟨Π2

1/2∣ ∂
∂RΣ

3
1/2⟩ ⟨Π2

1/2∣ ∂
∂RΣ

4
1/2⟩

⟨Π3
1/2∣ ∂

∂RΣ
1
1/2⟩ ⟨Π3

1/2∣ ∂
∂RΣ

2
1/2⟩ ⟨Π3

1/2∣ ∂
∂RΣ

3
1/2⟩ ⟨Π3

1/2∣ ∂
∂RΣ

4
1/2⟩

⟨Π4
1/2∣ ∂

∂RΣ
1
1/2⟩ ⟨Π4

1/2∣ ∂
∂RΣ

2
1/2⟩ ⟨Π4

1/2∣ ∂
∂RΣ

3
1/2⟩ ⟨Π4

1/2∣ ∂
∂RΣ

4
1/2⟩

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (10)

In reality, p is an off-diagonal submatrix of the entire DCT matrix for
all wavefunctions; however, if we are only interested in the coupling
between the {A2Πj

1/2} space and the {B2Σi
1/2} space, we need to only

consider the matrix formed between these eight wavefunctions and
their duals, for which the diagonal blocks are zero,

P = ( 0 p
−p† 0

). (11)

If we assume that p is not singular, then there exists a similarity
transformation by which it may be diagonalized,

pd = v−1pv. (12)

It follows that the off-diagonal blocks of the matrix P can be
diagonalized by the transformation

P′ ≡ ( 0 pd

−pd † 0
) = ( v

†−1 0
0 v

)
†

( 0 p
−p† 0

)( v
†−1 0
0 v

). (13)

We now find P′ in a new basis in which the original, arbitrarily
rotated, and phased wavefunctions have been rerotated to yield the

canonical sets of wavefunctions {∣Π′1/2⟩} and {∣Σ′1/2⟩}. This trans-
formation has reduced the number of DCTs from 16 to 4 (the four
eigenvalues of the off-diagonal block), each of which couples only
one ∣Π′1/2⟩ wavefunction to only one ∣Σ′1/2⟩ wavefunction. Since the
wavefunctions in each respective space are, for our purposes, indis-
tinguishable, there should be no distinction of the coupling between
any two pairs, and we should expect all four new DCTs to have the
same magnitude.

As an example of the preceding discussion, consider the DCTs
of the KHe system at 5.0 Å (9.4 bohr). The calculated DCTs are
found in the matrix

p =

⎛
⎜⎜⎜⎜⎜
⎝

0.0668 −0.0242 −1.72 511
−510 0.163 −0.0651 0.0533
−0.0554 10.4 511 1.75
−0.184 −511 10.4 0.0156

⎞
⎟⎟⎟⎟⎟
⎠

× 10−4 rad/bohr,

(14)

which is diagonalized by the matrix

v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0.347 − 40.9i 0.480 + 40.8i 70.6 0.988 − 40.9i

0.347 + 40.9i 48.0 − 40.8i 70.6 0.988 − 40.9i

57.8 28.9 + 50.0i 0.102 − 0.734i −28.9 + 50.0i

57.8 28.9 − 50.0i 0.10.2 + 0.734i −28.9 − 50.0i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

× 10−2. (15)
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When the matrix P built from the matrix in Eq. (14) is subjected to the transformation in Eq. (13), the resultant DCT matrix is

P′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 51.1 − 0.505i 0 0 0
0 0 0 0 0 51.1 + 0.505i 0 0
0 0 0 0 0 0 −25.5 − 44.3i 0
0 0 0 0 0 0 0 −25.5 + 44.3i

−51.1 − 0.505i 0 0 0 0 0 0 0
0 −51.1 + 0.505i 0 0 0 0 0 0
0 0 25.5 − 44.3i 0 0 0 0 0
0 0 0 25.5 + 44.3i 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

×10−3 rad/bohr. (16)

Although each of the DCTs in P′ is complex, we have the option
of affecting an arbitrary phase rotation between each pair of wave-
functions, allowing us to remove the imaginary portion of each
DCT,

P′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

× 0.0511 rad/bohr.

(17)

As hypothesized, we see that, in the canonical basis, the DCTs
between each distinct pair of wavefunctions are indeed of the same
magnitude. From this exercise, we also conclude that we need to only
calculate four DCTs, not 16, to find the magnitude of a single canoni-
cal DCT. From the four distinct elements of any given row or column
of the DCT matrix, we can calculate a Euclidean norm, which is the
DCT in the canonical basis. The radial DCT in the canonical basis,

FIG. 2. Radial DCT between Π1/2 and Σ1/2 states.

calculated as the norm of the DCTs in the first row of P, is shown in
Fig. 2.

This exercise has shown that, despite the eight wavefunctions
involved, we are effectively seeking the adiabatic mixing angle for
only two wavefunctions. That mixing angle is calculated as the
integral of the DCTs from R′ = (∞) to R′ = R. Figure 3 shows
the result of that integration for KHe. Figure 4 shows the adia-
batic surfaces and the resultant mixed diabatic surfaces. Figure 5
shows the off-diagonal diabatic coupling surface. The strength of the
coupling surface depends upon both the size of the coupling angle

FIG. 3. Radial coupling angle between Π1/2 and Σ1/2 states via methods 1 and 2.

FIG. 4. Diabatic vs adiabatic K He surfaces.
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FIG. 5. Diabatic K He coupling surface.

and the energy difference between the two adiabatic surfaces; thus,
the coupling surface continues to grow well past the area where
DCTs are strong, into a region which, for most interactions, would
be energetically disallowed.

B. Method 2: Direct calculation of the coupling angle
from the electronic eigenvalues

We now explore an alternative method that directly approx-
imates the coupling angle α(R) for a two-state C∞v system, with-
out the need to calculate DCTs directly. This method is based on
Nikitin’s 3 × 3 matrix description of the coupling between the Σ
and Π surfaces.18 For comparison with method 1, DCTs can then
be calculated as ∂α(R)/∂R.

For the systems of interest to DPALs, M + Ng with the valence
electron of M excited to the p-manifold, the only allowable angular
momentum values are 1 for the orbital angular momentum and 1/2
for spin. Therefore, before relativistic considerations, the space we

are interested in is spanned by the wavefunctions

{∣ l s
ml ms

⟩} = {∣ 1 1/2
1 ±1/2 ⟩, ∣

1 1/2
0 ±1/2 ⟩, ∣

1 1/2
−1 ±1/2 ⟩}. (18)

The electronic Hamiltonian has the form

H(R) = H0(R) + Hso(R), (19)

Hso ≡ a(R)̂l ⋅ ŝ = a(R)(ĵ2 − l̂2 − ŝ2), (20)

where ĵ, l̂, and ŝ represent the total, orbital, and spin angular
momentum, respectively, and H0(R) is the nonrelativistic electronic
Hamiltonian, which is diagonal in the basis,

H0(R) =
⎛
⎜⎜
⎝

Π 0 0
0 Π 0
0 0 Σ

⎞
⎟⎟
⎠

, (21)

where we have, and will continue to suppress dependence on R
within matrix representations, unless emphasis is necessary. With-
out the spin-orbit operator, Hso(R), each pair of wavefunctions is
degenerate. The addition of the spin-orbit operator encourages a
change from the l − s basis to total angular momentum, j basis,

{∣ jmj
⟩} = {∣ 3/2

±3/2 ⟩, ∣
3/2
±1/2 ⟩, ∣

1/2
±1/2 ⟩}. (22)

Although Hso(R) is diagonal in this basis, with elements

⟨ j′

m′j
∣Hso(R)∣ jmj

⟩ = δj′ ,jδm′j ,mj[a(R)( j( j + 1) − l(l + 1) − s(s + 1))],

(23)
now H0(R) is not, with elements

⟨ j′

m′j
∣H0(R)∣ jmj

⟩ = ∑
ml ,m′l ,ms ,ms

′

(l ml
′sms

′|l s j′mj
′)(l ml sms|l s jmj)⟨ l s

ml
′ ms

′ ∣H0(R)∣ l s
ml ms

⟩

= ∑
ml ,m′l ,ms ,ms

′

(l ml
′sms

′|l s j′mj
′)(l ml sms|l s jmj)Wml ,msδm ′

l ,mlδm ′

s ,ms

= δm ′

j ,mj ∑
ml ,ms

(l ml
′sm ′

s |l s j′mj
′)(l ml sms|l s jmj)Wml ,ms , (24)

where (l ml sms|l s j mj) are the Clebsch-Gordon coefficients. Replacing these coefficients with the Wigner 3j-matrices, H0(R) becomes

⟨ j′

m′j
∣H0(R)∣ jmj

⟩ = δm′j ,mj[(2j
′ + 1)(2j + 1)]1/ 2 ∑

ml ,ms

( l s j′

ml ms −mj
)( l s j

ml ms −mj
)Wml ,ms . (25)

As we are only interested in the p-manifold for the M + Ng system, we can enumerate those states with l = 1,

⟨ j′

m′j
∣H0(R)∣ jmj

⟩ = δm′j ,mj[(2j
′ + 1)(2j + 1)]1/2

×∑
ms

[( 1 s j′

1 ms −mj
)( 1 s j

1 ms −mj
)Π+( 1 s j′

−1 ms −mj
)( 1 s j
−1 ms −mj

)Π + ( 1 s j′

0 mj −mj
)( 1 s j

0 mj −mj
)Σ] (26)
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(where we have used the relationship mj = ms for a state in which
ml = 0). To Eq. (26), we can add zero in the form

0 = ( 1 s j′

0 mj −mj
)( 1 s j

0 mj −mj
)Π − ( 1 s j′

0 mj −mj
)( 1 s j

0 mj −mj
)Π,

(27)

so that we can now set H0(R) equal to

⟨ j′

m′j
∣H0(R)∣ jmj

⟩ = δm′j ,mj[δj′ ,jΠ + [(2j′ + 1)(2j + 1)]1/2(Σ −Π)

×( 1 s j′

0 mj −mj
)( 1 s j

0 mj −mj
)], (28)

or, in the matrix form in the j, mj basis,

H0(R) =
1
3

⎛
⎜⎜⎜
⎝

3Π 0 0

0 2Σ + Π ∓
√

2(Σ −Π)
0 ∓

√
2(Σ −Π) Σ + 2Π

⎞
⎟⎟⎟
⎠

. (29)

With the addition of Hso(R) from Eq. (23), we have

H0(R) + Hso(R) =
1
6

⎛
⎜⎜⎜
⎝

6Π + 3a 0 0

0 4Σ + 2Π + 3a ∓2
√

2(Σ −Π)
0 ∓2

√
2(Σ −Π) 2Σ + 4Π − 6a

⎞
⎟⎟⎟
⎠

.

(30)

Equation (30) is obtained using a simple form for the spin-orbit cou-
pling where the diabatic coupling surface is given by the 2,3 matrix
element. As discussed in Refs. 11 and 25, the diabatic coupling curve
is obtained by first diagonalizing equation (30) and identifying the
eigenvalues as the MRCI A2Π1/2(R), B2Σ1/2(R), and A2Π3/2(R) adi-
abatic potential energy curves. Analytic expressions for the eigenval-
ues in terms of Σ(R), Π(R), and a(R) are inverted to yield expressions
for Σ(R), Π(R), and a(R) in terms of the MRCI surfaces. As a result,
the diabatic coupling curve given by the difference of the Σ(R) and
Π(R) surfaces directly incorporates the full MRCI-level calculation
into the simple Hamiltonian given by Eq. (20).

It is interesting to note that the off-diagonal diabatic curve
in Eq. (30) is given by the difference between the Σ(R) and Π(R)
surfaces but does not directly depend on the spin-orbit coupling
a(R). For KHe, the spin-orbit coupling exhibits a very shallow two-
wavenumber well with a minimum at R ≈ 3 Å and reaching a con-
stant value at R ≈ 9 Å, and is nearly constant thereafter. Spin-orbit
splittings as a function of internuclear separation are shown for K,
Rb, and Cs interacting with He, Ne, and Ar in Fig. 3 of Ref. 25.

The full Hamiltonian is now

H(R) = TN(R) + H0(R) + Hso(R)

= − 1
2μ

⎛
⎜⎜⎜
⎝

∂
∂R 0 0

0 ∂
∂R p

0 p ∂
∂R

⎞
⎟⎟⎟
⎠

2

+
1
6

⎛
⎜⎜⎜
⎝

6Π + 3a 0 0

0 4Σ + 2Π + 3a ∓2
√

2(Σ −Π)

0 ∓2
√

2(Σ −Π) 2Σ + 4Π − 6a

⎞
⎟⎟⎟
⎠

, (31)

where we have ignored the angular kinetic part of the Hamiltonian,
as it plays no part in the calculation of the radial DCTs. Note that in
Eq. (31), we have left p(R) in the kinetic Hamiltonian, as nothing in
this derivation guarantees that it is summarily zero. We can compare
this form of the Hamiltonian to the adiabatic Hamiltonian on the
basis of molecular wavefunctions,

H(R) = − 1
2μ

⎛
⎜⎜
⎝

∂
∂R 0 0

0 ∂
∂R p

0 p ∂
∂R

⎞
⎟⎟
⎠

2

+
⎛
⎜⎜
⎝

Π3/2 0 0
0 Σ1/2 0
0 0 Π1/2

⎞
⎟⎟
⎠

. (32)

When the correct rotation is applied to this Hamiltonian to diago-
nalize the kinetic energy operator, Eq. (32) transforms to

H(R) = − 1
2μ

⎛
⎜⎜
⎝

∂
∂R 0 0

0 ∂
∂R 0

0 0 ∂
∂R

⎞
⎟⎟
⎠

2

+
⎛
⎜⎜
⎝

Π3/2 0 0

0 Σ1/2 cos2 α + Π1/2 sin2 α sinα cosα(Σ1/2 −Π1/2)
0 sinα cosα(Σ1/2 −Π1/2) Π1/2 cos2 α + Σ1/2 sin2 α

⎞
⎟⎟
⎠

.

(33)

Lewis has demonstrated that the potential energy surfaces in Eq. (31)
are exactly equal to those of Eq. (33).11 From this result, we
come to the conclusion that Eqs. (31) and (33) are equivalent,
since Eq. (31) is the strictly diabatic representation of the Hamil-
tonian. Furthermore, we conclude that the off-diagonal potential
energy surfaces of (31) and (33) are equivalent, and we therefore
have the following formula for the calculation of α, the coupling
angle:

α(R) = 1
2

arcsin(2
√

2
3
(Σ −Π)/Σ1/ 2 −Π1/ 2), (34)

where we emphasize that Π and Σ represent the nonrelativis-
tic electronic eigenvalues, whereas Π1/2 and Σ1/2 represent those
that include the spin-orbit contribution. The radial DCTs are
then computed as the radial derivative of the coupling angle,
as stated previously.7 Figure 6 shows that the KHe radial
DCTs computed this way are equivalent to those computed by
method 1.

FIG. 6. Comparison of radial DCTs from method 1 (solid) and method 2 (dashed).
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FIG. 7. Coupling angle as calculated via DCTs vs calculated via CI coefficients.

FIG. 8. DCT as calculated vs derivative of Werner’s angle.

C. Method 3: Approximation of the coupling angle
from MRCI coefficients

Werner, Follmeg, and Alexander established a method to esti-
mate the coupling angle using the MRCI wavefunction coefficients,19

θΣ1/2−Π1/2 ≈ arcsin
⎛
⎜
⎝

¿
ÁÁÀ ∑

i∈Π1/2

(cΣ1/2
i )

2
/∑

i
(cΣ1/2

i )
2⎞
⎟
⎠

, (35)

where the Euclidean norm is taken off the coefficients of the Σ1/2

eigenvector, cΣ1/2
i , which coincides with CSFs that have Π1/2 sym-

metry (for simplicity, only the reference CSFs are considered in an
MRCI calculation). We can generalize this method to spin-orbit
wavefunctions by using the Euclidean norm of all coefficients per-
taining to CSFs whose physical occupation is appropriate. Figure 7
compares the calculated mixing angle from methods 1 and 2 with the
angle estimated via the Werner method. Similarly, Fig. 8 compares
the radial DCT from methods 1 and 2 with the derivative of Werner’s
angle. The Werner’s angle matches with the angle calculated with the
DCTs by less than 0.02 radians, with greater difference at the repul-
sion wall, an acceptable error, given the parsimonious nature of this
approximation.

III. CONCLUSIONS
Code based on COLUMBUS and NWCHEM has been mod-

ified to directly calculate analytic energy gradients and DCTs of
spin-orbit wavefunctions at the MRCI level. The DCTs, coupling
angles, and coupling surfaces calculated with this modified code

compare favorably with those calculated using a simple method
based on Nikitin’s 3 × 3 matrix formulation, as well as the cou-
pling angle approximation from Werner’s method. These favor-
able comparisons lead us to conclude that we have correctly calcu-
lated the radial DCTs for KHe. Cross-section calculations25 identify
that these DCTs are required to properly model the KHe dynam-
ics. Although Lewis’ method was specifically derived for M + Ng
systems, it may be adaptable for more general situations. Our manip-
ulations to the COLUMBUS and NWCHEM code were not specific
to any system or geometry and should be generally applicable should
that formalism be incorporated into the production code.
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