276 research outputs found

    Furan in heat-treated foods: Formation, exposure, toxicity, and aspects of risk assessment

    Get PDF
    Furan is formed in a variety of heat-treated foods through thermal degradation of natural food constituents. Relatively high levels of furan contamination are found in ground roasted coffee, instant coffee, and processed baby foods. European exposure estimates suggest that mean dietary exposure to furan may be as high as 1.23 and 1.01 μg/kg bw/day for adults and 3- to 12-month-old infants, respectively. Furan is a potent hepatotoxin and hepatocarcinogen in rodents, causing hepatocellular adenomas and carcinomas in rats and mice, and high incidences of cholangiocarcinomas in rats at doses ≥2 mg/kg bw. There is therefore a relatively low margin of exposure between estimated human exposure and doses that cause a high tumor incidence in rodents. Since a genotoxic mode of action cannot be excluded for furan-induced tumor formation, the present exposures may indicate a risk to human health and need for mitigation. This review summarizes the current knowledge on mechanisms of furan formation in food, human dietary exposure to furan, and furan toxicity, and highlights the need to establish the risk resulting from the genotoxic and carcinogenic properties of furan at doses lower than 2 mg/kg bw. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Absorption and Metabolism of cis-9,trans-11-CLA and of Its Oxidation Product 9,11-Furan Fatty Acid by Caco-2 Cells

    Get PDF
    Furan fatty acids (furan-FA) can be formed by auto-oxidation of conjugated linoleic acids (CLA) and may therefore be ingested when CLA-containing foodstuff is consumed. Due to the presence of a furan ring structure, furan-FA may have toxic properties, however, these substances are toxicologically not well characterized so far. Here we show that 9,11-furan-FA, the oxidation product of the major CLA isomer cis-9,trans-11-CLA (c9,t11-CLA), is not toxic to human intestinal Caco-2 cells up to a level of 100 μM. Oil-Red-O staining indicated that 9,11-furan-FA as well as c9,t11-CLA and linoleic acid are taken up by the cells and stored in the form of triglycerides in lipid droplets. Chemical analysis of total cellular lipids revealed that 9,11-furan-FA is partially elongated probably by the enzymatic activity of cellular fatty acid elongases whereas c9,t11-CLA is partially converted to other isomers such as c9,c11-CLA or t9,t11-CLA. In the case of 9,11-furan-FA, there is no indication for any modification or activation of the furan ring system. From these results, we conclude that 9,11-furan-FA has no properties of toxicological relevance at least for Caco-2 cells which serve as a model for enterocytes of the human small intestine

    Risks for public health related to the presence of furan and methylfurans in food

    Get PDF
    EFSA wishes to thank the hearing experts: Diana Doell and Ruud Woutersen and EFSA staff member: José Cortinas Abrahantes for the support provided to this scientific output. The CONTAM Panel acknowledges all European competent institutions and other stakeholders that provided occurrence data on furan and methylfurans in food, and supported the data collection for the Comprehensive European Food Consumption Database. Adopted: 20 September 2017Peer reviewedPublisher PD

    Mathematical model insights into arsenic detoxification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Arsenic in drinking water, a major health hazard to millions of people in South and East Asia and in other parts of the world, is ingested primarily as trivalent inorganic arsenic (iAs), which then undergoes hepatic methylation to methylarsonic acid (MMAs) and a second methylation to dimethylarsinic acid (DMAs). Although MMAs and DMAs are also known to be toxic, DMAs is more easily excreted in the urine and therefore methylation has generally been considered a detoxification pathway. A collaborative modeling project between epidemiologists, biologists, and mathematicians has the purpose of explaining existing data on methylation in human studies in Bangladesh and also testing, by mathematical modeling, effects of nutritional supplements that could increase As methylation.</p> <p>Methods</p> <p>We develop a whole body mathematical model of arsenic metabolism including arsenic absorption, storage, methylation, and excretion. The parameters for arsenic methylation in the liver were taken from the biochemical literature. The transport parameters between compartments are largely unknown, so we adjust them so that the model accurately predicts the urine excretion rates of time for the iAs, MMAs, and DMAs in single dose experiments on human subjects.</p> <p>Results</p> <p>We test the model by showing that, with no changes in parameters, it predicts accurately the time courses of urinary excretion in mutiple dose experiments conducted on human subjects. Our main purpose is to use the model to study and interpret the data on the effects of folate supplementation on arsenic methylation and excretion in clinical trials in Bangladesh. Folate supplementation of folate-deficient individuals resulted in a 14% decrease in arsenicals in the blood. This is confirmed by the model and the model predicts that arsenicals in the liver will decrease by 19% and arsenicals in other body stores by 26% in these same individuals. In addition, the model predicts that arsenic methyltransferase has been upregulated by a factor of two in this population. Finally, we also show that a modification of the model gives excellent fits to the data on arsenic metabolism in human cultured hepatocytes.</p> <p>Conclusions</p> <p>The analysis of the Bangladesh data using the model suggests that folate supplementation may be more effective at reducing whole body arsenic than previously expected. There is almost no data on the upregulation of arsenic methyltransferase in populations chronically exposed to arsenic. Our model predicts upregulation by a factor of two in the Bangladesh population studied. This prediction should be verified since it could have important public health consequences both for treatment strategies and for setting appropriate limits on arsenic in drinking water. Our model has compartments for the binding of arsenicals to proteins inside of cells and we show that these comparments are necessary to obtain good fits to data. Protein-binding of arsenicals should be explored in future biochemical studies.</p

    Heterogeneity of human adipose blood flow

    Get PDF
    BACKGROUND: The long time pharmacokinetics of highly lipid soluble compounds is dominated by blood-adipose tissue exchange and depends on the magnitude and heterogeneity of adipose blood flow. Because the adipose tissue is an infinite sink at short times (hours), the kinetics must be followed for days in order to determine if the adipose perfusion is heterogeneous. The purpose of this paper is to quantitate human adipose blood flow heterogeneity and determine its importance for human pharmacokinetics. METHODS: The heterogeneity was determined using a physiologically based pharmacokinetic model (PBPK) to describe the 6 day volatile anesthetic data previously published by Yasuda et. al. The analysis uses the freely available software PKQuest and incorporates perfusion-ventilation mismatch and time dependent parameters that varied from the anesthetized to the ambulatory period. This heterogeneous adipose perfusion PBPK model was then tested by applying it to the previously published cannabidiol data of Ohlsson et. al. and the cannabinol data of Johansson et. al. RESULTS: The volatile anesthetic kinetics at early times have only a weak dependence on adipose blood flow while at long times the pharmacokinetics are dominated by the adipose flow and are independent of muscle blood flow. At least 2 adipose compartments with different perfusion rates (0.074 and 0.014 l/kg/min) were needed to describe the anesthetic data. This heterogeneous adipose PBPK model also provided a good fit to the cannabinol data. CONCLUSION: Human adipose blood flow is markedly heterogeneous, varying by at least 5 fold. This heterogeneity significantly influences the long time pharmacokinetics of the volatile anesthetics and tetrahydrocannabinol. In contrast, using this same PBPK model it can be shown that the long time pharmacokinetics of the persistent lipophilic compounds (dioxins, PCBs) do not depend on adipose blood flow. The ability of the same PBPK model to describe both the anesthetic and cannabinol kinetics provides direct qualitative evidence that their kinetics are flow limited and that there is no significant adipose tissue diffusion limitation

    Priorities for development of research methods in occupational cancer.

    Get PDF
    Occupational cancer research methods was identified in 1996 as 1 of 21 priority research areas in the National Occupational Research Agenda (NORA). To implement NORA, teams of experts from various sectors were formed and given the charge to further define research needs and develop strategies to enhance or augment research in each priority area. This article is a product of that process. Focus on occupational cancer research methods is important both because occupational factors play a significant role in a number of cancers, resulting in significant morbidity and mortality, and also because occupational cohorts (because of higher exposure levels) often provide unique opportunities to evaluate health effects of environmental toxicants and understand the carcinogenic process in humans. Despite an explosion of new methods for cancer research in general, these have not been widely applied to occupational cancer research. In this article we identify needs and gaps in occupational cancer research methods in four broad areas: identification of occupational carcinogens, design of epidemiologic studies, risk assessment, and primary and secondary prevention. Progress in occupational cancer will require interdisciplinary research involving epidemiologists, industrial hygienists, toxicologists, and molecular biologists

    Exposure assessment of process-related contaminants in food by biomarker monitoring

    Get PDF
    Exposure assessment is a fundamental part of the risk assessment paradigm, but can often present a number of challenges and uncertainties. This is especially the case for process contaminants formed during the processing, e.g. heating of food, since they are in part highly reactive and/or volatile, thus making exposure assessment by analysing contents in food unreliable. New approaches are therefore required to accurately assess consumer exposure and thus better inform the risk assessment. Such novel approaches may include the use of biomarkers, physiologically based kinetic (PBK) modelling-facilitated reverse dosimetry, and/or duplicate diet studies. This review focuses on the state of the art with respect to the use of biomarkers of exposure for the process contaminants acrylamide, 3-MCPD esters, glycidyl esters, furan and acrolein. From the overview presented, it becomes clear that the field of assessing human exposure to process-related contaminants in food by biomarker monitoring is promising and strongly developing. The current state of the art as well as the existing data gaps and challenges for the future were defined. They include (1) using PBK modelling and duplicate diet studies to establish, preferably in humans, correlations between external exposure and biomarkers; (2) elucidation of the possible endogenous formation of the process-related contaminants and the resulting biomarker levels; (3) the influence of inter-individual variations and how to include that in the biomarker-based exposure predictions; (4) the correction for confounding factors; (5) the value of the different biomarkers in relation to exposure scenario’s and risk assessment, and (6) the possibilities of novel methodologies. In spite of these challenges it can be concluded that biomarker-based exposure assessment provides a unique opportunity to more accurately assess consumer exposure to process-related contaminants in food and thus to better inform risk assessment
    corecore