263 research outputs found

    Variability of indication criteria in knee and hip replacement: an observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Total knee (TKR) and hip (THR) replacement (arthroplasty) are effective surgical procedures that relieve pain, improve patients' quality of life and increase functional capacity. Studies on variations in medical practice usually place the indications for performing these procedures to be highly variable, because surgeons appear to follow different criteria when recommending surgery in patients with different severity levels. We therefore proposed a study to evaluate inter-hospital variability in arthroplasty indication.</p> <p>Methods</p> <p>The pre-surgical condition of 1603 patients included was compared by their personal characteristics, clinical situation and self-perceived health status. Patients were asked to complete two health-related quality of life questionnaires: the generic SF-12 (Short Form) and the specific WOMAC (Western Ontario and Mcmaster Universities) scale. The type of patient undergoing primary arthroplasty was similar in the 15 different hospitals evaluated.</p> <p>The variability in baseline WOMAC score between hospitals in THR and TKR indication was described by range, mean and standard deviation (SD), mean and standard deviation weighted by the number of procedures at each hospital, high/low ratio or extremal quotient (EQ<sub>5-95</sub>), variation coefficient (CV<sub>5-95</sub>) and weighted variation coefficient (WCV<sub>5-95</sub>) for 5-95 percentile range. The variability in subjective and objective signs was evaluated using median, range and WCV<sub>5-95</sub>. The appropriateness of the procedures performed was calculated using a specific threshold proposed by Quintana et al for assessing pain and functional capacity.</p> <p>Results</p> <p>The variability expressed as WCV<sub>5-95 </sub>was very low, between 0.05 and 0.11 for all three dimensions on WOMAC scale for both types of procedure in all participating hospitals. The variability in the physical and mental SF-12 components was very low for both types of procedure (0.08 and 0.07 for hip and 0.03 and 0.07 for knee surgery patients). However, a moderate-high variability was detected in subjective-objective signs. Among all the surgeries performed, approximately a quarter of them could be considered to be inappropriate.</p> <p>Conclusions</p> <p>A greater inter-hospital variability was observed for objective than for subjective signs for both procedures, suggesting that the differences in clinical criteria followed by surgeons when indicating arthroplasty are the main responsible factors for the variation in surgery rates.</p

    Identification of the Sex Pheromone of a Protected Species, the Spanish Moon Moth Graellsia isabellae

    Get PDF
    Sex attractant pheromones are highly sensitive and selective tools for detecting and monitoring populations of insects, yet there has been only one reported case of pheromones being used to monitor protected species. Here, we report the identification and synthesis of the sex pheromone of a protected European moth species, Graellsia isabellae (Lepidoptera: Saturniidae), as the single component, (4E,6E,11Z)-hexadecatrienal. In preliminary field trials, lures loaded with this compound attracted male moths from populations of this species at a number of widely separated field sites in France, Switzerland, and Spain, clearly demonstrating the utility of pheromones in sampling potentially endangered insect species

    Positive correlation between Merkel cell polyomavirus viral load and capsid-specific antibody titer

    Get PDF
    Merkel cell polyomavirus (MCPyV or MCV) is the first polyomavirus to be clearly implicated as a causal agent underlying a human cancer, Merkel cell carcinoma (MCC). Infection with MCPyV is common in the general population, and a majority of adults shed MCPyV from the surface of their skin. In this study, we quantitated MCPyV DNA in skin swab specimens from healthy volunteers sampled at different anatomical sites over time periods ranging from 3 months to 4 years. The volunteers were also tested using a serological assay that detects antibodies specific for the MCPyV virion. There was a positive correlation between MCPyV virion-specific antibody titers and viral load at all anatomical sites tested (dorsal portion of the hands, forehead, and buttocks) (Spearman’s r 0.644, P < 0.0001). The study results are consistent with previous findings suggesting that the skin is primary site of chronic MCPyV infection in healthy adults and suggest that the magnitude of an individual’s seroresponsiveness against the MCPyV virion generally reflects the overall MCPyV DNA load across wide areas of the skin. In light of previous reports indicating a correlation between MCC and strong MCPyV-specific seroresponsiveness, this model suggests that poorly controlled chronic MCPyV infection might be a risk factor in the development of MCC

    Newly described human polyomaviruses Merkel Cell, KI and WU are present in urban sewage and may represent potential environmental contaminants

    Get PDF
    Recently, three new polyomaviruses (KI, WU and Merkel cell polyomavirus) have been reported to infect humans. It has also been suggested that lymphotropic polyomavirus, a virus of simian origin, infects humans. KI and WU polyomaviruses have been detected mainly in specimens from the respiratory tract while Merkel cell polyomavirus has been described in a very high percentage of Merkel cell carcinomas. The distribution, excretion level and transmission routes of these viruses remain unknown

    High prevalence of antibodies against polyomavirus WU, polyomavirus KI, and human bocavirus in German blood donors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA of the polyomaviruses WU (WUPyV) and KI (KIPyV) and of human bocavirus (HBoV) has been detected with varying frequency in respiratory tract samples of children. However, only little is known about the humoral immune response against these viruses. Our aim was to establish virus-specific serological assays and to determine the prevalence of immunoglobulin G (IgG) against these three viruses in the general population.</p> <p>Methods</p> <p>The capsid proteins VP1 of WUPyV and KIPyV and VP2 of HBoV were cloned into baculovirus vectors and expressed in Sf9 insect cells. IgG antibodies against WUPyV VP1, KIPyV VP1, and HBoV VP2 were determined by immunofluorescence assays in 100 plasma samples of blood donors.</p> <p>Results</p> <p>The median age of the blood donors was 31 years (range 20 - 66 yrs), 52% were male. 89% of the samples were positive for WUPyV IgG (median age 31 yrs, 49.4% male), 67% were positive for KIPyV IgG (median age 32 yrs, 46.3% male), and 76% were positive for HBoV IgG (median age 32 yrs, 51.3% male). For WUPyV and HBoV, there were no significant differences of the seropositivity rates with respect to age groups or gender. For KIPyV, the seropositivity rate increased significantly from 59% in the age group 20 - 29 years to 100% in the age group > 50 years.</p> <p>Conclusions</p> <p>High prevalences of antibodies against WUPyV, KIPyV, and HBoV were found in plasma samples of healthy adults. The results indicate that primary infection with these viruses occurs during childhood or youth. For KIPyV, the seropositivity appears to increase further during adulthood.</p

    Approaches for estimating benefits and costs of interventions in plant biosecurity across invasion phases

    Get PDF
    Nonnative plant pests cause billions of dollars in damages. It is critical to prevent or reduce these losses by intervening at various stages of the invasion process, including pathway risk management (to prevent pest arrival), surveillance and eradication (to counter establishment), and management of established pests (to limit damages). Quantifying benefits and costs of these interventions is important to justify and prioritize investments and to inform biosecurity policy. However, approaches for these estimations differ in (1) the assumed relationship between supply, demand, and prices, and (2) the ability to assess different types of direct and indirect costs at invasion stages, for a given arrival or establishment probability. Here we review economic approaches available to estimate benefits and costs of biosecurity interventions to inform the appropriate selection of approaches. In doing so, we complement previous studies and reviews on estimates of damages from invasive species by considering the influence of economic and methodological assumptions. Cost accounting is suitable for rapid decisions, specific impacts, and simple methodological assumptions but fails to account for feedbacks, such as market adjustments, and may overestimate long-term economic impacts. Partial equilibrium models consider changes in consumer and producer surplus due to pest impacts or interventions and can account for feedbacks in affected sectors but require specialized economic models, comprehensive data sets, and estimates of commodity supply and demand curves. More intensive computable general equilibrium models can account for feedbacks across entire economies, including capital and labor, and linkages among these. The two major considerations in choosing an approach are (1) the goals of the analysis (e.g., consideration of a single pest or intervention with a limited range of impacts vs. multiple interventions, pests or sectors), and (2) the resources available for analysis such as knowledge, budget and time

    A microplate technique to simultaneously assay calcium accumulation in endoplasmic reticulum and SERCA release of inorganic phosphate

    Get PDF
    Traditional analyses of calcium homeostasis have separately quantified either calcium accumulation or release mechanisms. To define the system as a whole, however, requires multiple experimental techniques to examine both accumulation and release. Here we describe a technique that couples the simultaneous quantification of radio-labeled calcium accumulation in endoplasmic reticulum (ER) microsomes with the release of inorganic phosphate (Pi) by the hydrolytic activity of sarco-endoplasmic reticulum calcium ATPase (SERCA) all in the convenience of a 96-well format

    Quantitation of Human Seroresponsiveness to Merkel Cell Polyomavirus

    Get PDF
    Merkel cell carcinoma (MCC) is a relatively uncommon but highly lethal form of skin cancer. A majority of MCC tumors carry DNA sequences derived from a newly identified virus called Merkel cell polyomavirus (MCV or MCPyV), a candidate etiologic agent underlying the development of MCC. To further investigate the role of MCV infection in the development of MCC, we developed a reporter vector-based neutralization assay to quantitate MCV-specific serum antibody responses in human subjects. Our results showed that 21 MCC patients whose tumors harbored MCV DNA all displayed vigorous MCV-specific antibody responses. Although 88% (42/48) of adult subjects without MCC were MCV seropositive, the geometric mean titer of the control group was 59-fold lower than the MCC patient group (p<0.0001). Only 4% (2/48) of control subjects displayed neutralizing titers greater than the mean titer of the MCV-positive MCC patient population. MCC tumors were found not to express detectable amounts of MCV VP1 capsid protein, suggesting that the strong humoral responses observed in MCC patients were primed by an unusually immunogenic MCV infection, and not by viral antigen expressed by the MCC tumor itself. The occurrence of highly immunogenic MCV infection in MCC patients is unlikely to reflect a failure to control polyomavirus infections in general, as seroreactivity to BK polyomavirus was similar among MCC patients and control subjects. The results support the concept that MCV infection is a causative factor in the development of most cases of MCC. Although MCC tumorigenesis can evidently proceed in the face of effective MCV-specific antibody responses, a small pilot animal immunization study revealed that a candidate vaccine based on MCV virus-like particles (VLPs) elicits antibody responses that robustly neutralize MCV reporter vectors in vitro. This suggests that a VLP-based vaccine could be effective for preventing the initial establishment of MCV infection

    Cellular and Viral Factors Regulating Merkel Cell Polyomavirus Replication

    Get PDF
    Merkel cell polyomavirus (MCV), a previously unrecognized component of the human viral skin flora, was discovered as a mutated and clonally-integrated virus inserted into Merkel cell carcinoma (MCC) genomes. We reconstructed a replicating MCV clone (MCV-HF), and then mutated viral sites required for replication or interaction with cellular proteins to examine replication efficiency and viral gene expression. Three days after MCV-HF transfection into 293 cells, although replication is not robust, encapsidated viral DNA and protein can be readily isolated by density gradient centrifugation and typical ∼40 nm diameter polyomavirus virions are identified by electron microscopy. The virus has an orderly gene expression cascade during replication in which large T (LT) and 57kT proteins are first expressed by day 2, followed by expression of small T (sT) and VP1 proteins. VP1 and sT proteins are not detected, and spliced 57kT is markedly diminished, in the replication-defective virus suggesting that early gene splicing and late gene transcription may be dependent on viral DNA replication. MCV replication and encapsidation is increased by overexpression of MCV sT, consistent with sT being a limiting factor during virus replication. Mutation of the MCV LT vacuolar sorting protein hVam6p (Vps39) binding site also enhances MCV replication while exogenous hVam6p overexpression reduces MCV virion production by >90%. Although MCV-HF generates encapsidated wild-type MCV virions, we did not find conditions for persistent transmission to recipient cell lines suggesting that MCV has a highly restricted tropism. These studies identify and highlight the role of polyomavirus DNA replication in viral gene expression and show that viral sT and cellular hVam6p are important factors regulating MCV replication. MCV-HF is a molecular clone that can be readily manipulated to investigate factors affecting MCV replication
    corecore