429 research outputs found

    Monitoring carbon dioxide concentration for early detection of spoilage in stored grain

    Get PDF
    Field experiments were conducted in storage silos to evaluate carbon dioxide sensors to monitor spoilage in grain prior to spoilage detection by traditional methods such as visual inspections and temperature cables. Carbon dioxide concentrations in the storage silo were monitored up to eight months and correlated to the presence of stored-product insects, molds and mycotoxin levels in the stored grain. The data showed that safe grain storage was observed at CO2 concentrations of 400 to 500 ppm. Higher concentrations of CO2 clearly showed mold spoilage or insect activity inside the grain storage silo. Carbon dioxide concentrations of 500 to 1200 ppm indicated onset of mold infection where as CO2 concentrations of 1500 to 4000 ppm and beyond clearly indicated severe mold infection or stored-product insects infestation. The percent kernel infection was in the range of 30% for CO2 concentrations of 500 to 1000 ppm to 90% for CO2 concentrations of 9000 ppm. Fungal concentrations were in the range of 2.0 ×102 colony forming units per gram (cfu/g) at 500 ppm CO2 concentration to 6.5 ×107 cfu/g at 9000 ppm CO2 concentration. Fungi of genera Aspergillus spp., Penicillium spp., and Fusarium spp. were isolated from spoiled grain. High concentration of fungi and presence of mycotoxins (aflatoxin: 2 ppb and Deoxynivalenol (DON): 1 ppm) were correlated with high CO2 concentration in the silos. The findings from this research will be helpful in providing more timely information regarding safe storage limits, aeration requirements and costs of spoilage mitigation measures such as turning, aerating and fumigating grain. Additionally, it will provide information on preventive stored grain quality management practices that should reduce residue levels of mycotoxins, pesticides and other foreign material in our food supply. The CO2 monitoring technology will increase the quality and quantity of stored grain, while saving the U.S. and global grain production, handling and processing industry millions of dollars annually. Keywords: Carbon dioxide, Grain storage, Stored-product insects, Mold and mycotoxi

    DrugBank 3.0: a comprehensive resource for ‘Omics’ research on drugs

    Get PDF
    DrugBank (http://www.drugbank.ca) is a richly annotated database of drug and drug target information. It contains extensive data on the nomenclature, ontology, chemistry, structure, function, action, pharmacology, pharmacokinetics, metabolism and pharmaceutical properties of both small molecule and large molecule (biotech) drugs. It also contains comprehensive information on the target diseases, proteins, genes and organisms on which these drugs act. First released in 2006, DrugBank has become widely used by pharmacists, medicinal chemists, pharmaceutical researchers, clinicians, educators and the general public. Since its last update in 2008, DrugBank has been greatly expanded through the addition of new drugs, new targets and the inclusion of more than 40 new data fields per drug entry (a 40% increase in data ‘depth’). These data field additions include illustrated drug-action pathways, drug transporter data, drug metabolite data, pharmacogenomic data, adverse drug response data, ADMET data, pharmacokinetic data, computed property data and chemical classification data. DrugBank 3.0 also offers expanded database links, improved search tools for drug–drug and food–drug interaction, new resources for querying and viewing drug pathways and hundreds of new drug entries with detailed patent, pricing and manufacturer data. These additions have been complemented by enhancements to the quality and quantity of existing data, particularly with regard to drug target, drug description and drug action data. DrugBank 3.0 represents the result of 2 years of manual annotation work aimed at making the database much more useful for a wide range of ‘omics’ (i.e. pharmacogenomic, pharmacoproteomic, pharmacometabolomic and even pharmacoeconomic) applications

    Seahawk: moving beyond HTML in Web-based bioinformatics analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Traditional HTML interfaces for input to and output from Bioinformatics analysis on the Web are highly variable in style, content and data formats. Combining multiple analyses can therfore be an onerous task for biologists. Semantic Web Services allow automated discovery of conceptual links between remote data analysis servers. A shared data ontology and service discovery/execution framework is particularly attractive in Bioinformatics, where data and services are often both disparate and distributed. Instead of biologists copying, pasting and reformatting data between various Web sites, Semantic Web Service protocols such as MOBY-S hold out the promise of seamlessly integrating multi-step analysis.</p> <p>Results</p> <p>We have developed a program (Seahawk) that allows biologists to intuitively and seamlessly chain together Web Services using a data-centric, rather than the customary service-centric approach. The approach is illustrated with a ferredoxin mutation analysis. Seahawk concentrates on lowering entry barriers for biologists: no prior knowledge of the data ontology, or relevant services is required. In stark contrast to other MOBY-S clients, in Seahawk users simply load Web pages and text files they already work with. Underlying the familiar Web-browser interaction is an XML data engine based on extensible XSLT style sheets, regular expressions, and XPath statements which import existing user data into the MOBY-S format.</p> <p>Conclusion</p> <p>As an easily accessible applet, Seahawk moves beyond standard Web browser interaction, providing mechanisms for the biologist to concentrate on the analytical task rather than on the technical details of data formats and Web forms. As the MOBY-S protocol nears a 1.0 specification, we expect more biologists to adopt these new semantic-oriented ways of doing Web-based analysis, which empower them to do more complicated, <it>ad hoc </it>analysis workflow creation without the assistance of a programmer.</p

    Shorter Telomeres May Mark Early Risk of Dementia: Preliminary Analysis of 62 Participants from the Nurses' Health Study

    Get PDF
    Background: Dementia takes decades to develop, and effective prevention will likely require early intervention. Thus, it is critical to identify biomarkers of preclinical disease, allowing targeting of high-risk subjects for preventive efforts. Since telomeres shorten with age and oxidative stress both of which are important contributors to the onset of dementia, telomere length might be a valuable biomarker. Methodology/Principal Findings: Among 62 participants of the Nurses' Health Study,we conducted neurologic evaluations, including patient and caregiver interviews physical exam, neurologic exam and neuropsychologic testing. We also conducted magnetic resonance imaging (MRI) in a sample of 29 of these women. In these preliminary data, after adjustment for numerous health and lifestyle factors, we found that truncated telomeres in peripheral blood leukocytes segregate with preclinical dementia states, including mild cognitive impairment (MRI); the odds of MCI were 12 fold higher (odds ratio = 12.00, 95% confidence interval 1.24-116.5) for those with shorter telomere length compared to longer telomere length. In addition, decreasing telomere length was strongly related to decreasing hippocampal volume (p=0.038). Conclusions: These preliminary data suggest that telomere length may be a possible early marker of dementia risk, and merits further study in large, prospective investigations

    DRD4 genotype predicts longevity in mouse and human

    Get PDF
    Longevity is influenced by genetic and environmental factors. The brain's dopamine system may be particularly relevant, since it modulates traits (e.g., sensitivity to reward, incentive motivation, sustained effort) that impact behavioral responses to the environment. In particular, the dopamine D4 receptor (DRD4) has been shown to moderate the impact of environments on behavior and health. We tested the hypothesis that the DRD4 gene influences longevity and that its impact is mediated through environmental effects. Surviving participants of a 30-year-old population-based health survey (N = 310; age range, 90-109 years; the 90+ Study) were genotyped/resequenced at the DRD4 gene and compared with a European ancestry-matched younger population (N = 2902; age range, 7-45 years). We found that the oldest-old population had a 66% increase in individuals carrying the DRD4 7R allele relative to the younger sample (p = 3.5 × 10(-9)), and that this genotype was strongly correlated with increased levels of physical activity. Consistent with these results, DRD4 knock-out mice, when compared with wild-type and heterozygous mice, displayed a 7-9.7% decrease in lifespan, reduced spontaneous locomotor activity, and no lifespan increase when reared in an enriched environment. These results support the hypothesis that DRD4 gene variants contribute to longevity in humans and in mice, and suggest that this effect is mediated by shaping behavioral responses to the environment.Fil: Grady, Deborah L.. University of California. College of Medicine. Department of Biological Chemistry; Estados UnidosFil: Thanos, Panayotis K.. National Institute on Alcohol Abuse and Alcoholism. Laboratory of Neuroimaging; Estados Unidos. Brookhaven National Laboratory. Medical Department. Behavioral Neuropharmocology and Neuroimaging Laboratory; Estados Unidos. Stony Brook University. Department of Psychology; Estados UnidosFil: Corrada, Maria M.. University of California. Department of Neurology; Estados UnidosFil: Barnett Jr., Jeffrey C.. Brookhaven National Laboratory. Medical Department. Behavioral Neuropharmocology and Neuroimaging Laboratory; Estados UnidosFil: Ciobanu, Valentina. University of California. College of Medicine. Department of Biological Chemistry; Estados UnidosFil: Shustarovich, Diana. Brookhaven National Laboratory. Medical Department. Behavioral Neuropharmocology and Neuroimaging Laboratory; Estados UnidosFil: Napoli, Anthony. Brookhaven National Laboratory. Medical Department. Behavioral Neuropharmocology and Neuroimaging Laboratory; Estados UnidosFil: Moyzis, Alexandra G.. University of California. College of Medicine. Department of Biological Chemistry; Estados UnidosFil: Grandy, David. Oregon Health Sciences University. Physiology and Pharmacology; Estados UnidosFil: Rubinstein, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular; ArgentinaFil: Wang, Gene-Jack. Brookhaven National Laboratory. Medical Department. Behavioral Neuropharmocology and Neuroimaging Laboratory; Estados UnidosFil: Kawas, Claudia H.. University of California. Department of Neurology; Estados UnidosFil: Chen, Chuansheng. University of California. Department of Psychology and Social Behavior; Estados UnidosFil: Dong, Qi. Beijing Normal University. National Key Laboratory of Cognitive Neuroscience and Learning; ChinaFil: Wang, Eric. University of California. College of Medicine. Department of Biological Chemistry; Estados Unidos. Aria Diagnostics Inc.; Estados Unidos. University of California. Institute of Genomics and Bioinformatics; Estados UnidosFil: Volkow, Nora D.. National Institute on Alcohol Abuse and Alcoholism. Laboratory of Neuroimaging; Estados Unidos. Brookhaven National Laboratory. Medical Department. Behavioral Neuropharmocology and Neuroimaging Laboratory; Estados Unidos. National Institute on Drug Abuse; Estados UnidosFil: Moyzis, Robert K.. University of California. College of Medicine. Department of Biological Chemistry; Estados Unidos. Beijing Normal University. National Key Laboratory of Cognitive Neuroscience and Learning; China. University of California. Institute of Genomics and Bioinformatics; Estados Unido

    Update of ASRP: the Arabidopsis Small RNA Project database

    Get PDF
    Development of the Arabidopsis Small RNA Project (ASRP) Database, which provides information and tools for the analysis of microRNA, endogenous siRNA and other small RNA-related features, has been driven by the introduction of high-throughput sequencing technology. To accommodate the demands of increased data, numerous improvements and updates have been made to ASRP, including new ways to access data, more efficient algorithms for handling data, and increased integration with community-wide resources. New search and visualization tools have also been developed to improve access to small RNA classes and their targets. ASRP is publicly available through a web interface at http://asrp.cgrb.oregonstate.edu/db

    The COMT Val158 Met polymorphism as an associated risk factor for Alzheimer disease and mild cognitive impairment in APOE 4 carriers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study is to examine the influence of the <it>catechol-O-methyltranferase (COMT) </it>gene (polymorphism Val158 Met) as a risk factor for Alzheimer's disease (AD) and mild cognitive impairment of amnesic type (MCI), and its synergistic effect with the <it>apolipoprotein E gene (APOE)</it>.</p> <p>A total of 223 MCI patients, 345 AD and 253 healthy controls were analyzed. Clinical criteria and neuropsychological tests were used to establish diagnostic groups.</p> <p>The DNA Bank of the University of the Basque Country (UPV-EHU) (Spain) determined <it>COMT </it>Val158 Met and <it>APOE </it>genotypes using real time polymerase chain reaction (rtPCR) and polymerase chain reaction (PCR), and restriction fragment length polymorphism (RFLPs), respectively. Multinomial logistic regression models were used to determine the risk of AD and MCI.</p> <p>Results</p> <p>Neither <it>COMT </it>alleles nor genotypes were independent risk factors for AD or MCI. The high activity genotypes (GG and AG) showed a synergistic effect with <it>APOE ε4 </it>allele, increasing the risk of AD (OR = 5.96, 95%CI 2.74-12.94, p < 0.001 and OR = 6.71, 95%CI 3.36-13.41, p < 0.001 respectivily). In AD patients this effect was greater in women.</p> <p>In MCI patients such as synergistic effect was only found between AG and <it>APOE ε4 </it>allele (OR = 3.21 95%CI 1.56-6.63, p = 0.02) and was greater in men (OR = 5.88 95%CI 1.69-20.42, p < 0.01).</p> <p>Conclusion</p> <p><it>COMT </it>(Val158 Met) polymorphism is not an independent risk factor for AD or MCI, but shows a synergistic effect with <it>APOE ε4 </it>allele that proves greater in women with AD.</p

    Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report.

    Get PDF
    We describe a recently recognized disease entity, limbic-predominant age-related TDP-43 encephalopathy (LATE). LATE neuropathological change (LATE-NC) is defined by a stereotypical TDP-43 proteinopathy in older adults, with or without coexisting hippocampal sclerosis pathology. LATE-NC is a common TDP-43 proteinopathy, associated with an amnestic dementia syndrome that mimicked Alzheimer's-type dementia in retrospective autopsy studies. LATE is distinguished from frontotemporal lobar degeneration with TDP-43 pathology based on its epidemiology (LATE generally affects older subjects), and relatively restricted neuroanatomical distribution of TDP-43 proteinopathy. In community-based autopsy cohorts, ∼25% of brains had sufficient burden of LATE-NC to be associated with discernible cognitive impairment. Many subjects with LATE-NC have comorbid brain pathologies, often including amyloid-β plaques and tauopathy. Given that the 'oldest-old' are at greatest risk for LATE-NC, and subjects of advanced age constitute a rapidly growing demographic group in many countries, LATE has an expanding but under-recognized impact on public health. For these reasons, a working group was convened to develop diagnostic criteria for LATE, aiming both to stimulate research and to promote awareness of this pathway to dementia. We report consensus-based recommendations including guidelines for diagnosis and staging of LATE-NC. For routine autopsy workup of LATE-NC, an anatomically-based preliminary staging scheme is proposed with TDP-43 immunohistochemistry on tissue from three brain areas, reflecting a hierarchical pattern of brain involvement: amygdala, hippocampus, and middle frontal gyrus. LATE-NC appears to affect the medial temporal lobe structures preferentially, but other areas also are impacted. Neuroimaging studies demonstrated that subjects with LATE-NC also had atrophy in the medial temporal lobes, frontal cortex, and other brain regions. Genetic studies have thus far indicated five genes with risk alleles for LATE-NC: GRN, TMEM106B, ABCC9, KCNMB2, and APOE. The discovery of these genetic risk variants indicate that LATE shares pathogenetic mechanisms with both frontotemporal lobar degeneration and Alzheimer's disease, but also suggests disease-specific underlying mechanisms. Large gaps remain in our understanding of LATE. For advances in prevention, diagnosis, and treatment, there is an urgent need for research focused on LATE, including in vitro and animal models. An obstacle to clinical progress is lack of diagnostic tools, such as biofluid or neuroimaging biomarkers, for ante-mortem detection of LATE. Development of a disease biomarker would augment observational studies seeking to further define the risk factors, natural history, and clinical features of LATE, as well as eventual subject recruitment for targeted therapies in clinical trials.Sally Hunter and Carol Brayne are supported by funding from the National Institute for Health Research, Senior Investigator Award, awarded to Carol Brayne. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care. Sally Hunter is supported by the Addenbrooke’s Charitable Trust, the Paul G. Allen Family Foundation and Alzheimer’s Research, UK. Suvi Hokkanen was supported by Alzheimer’s Research, UK

    Informant-reported cognitive symptoms that predict amnestic mild cognitive impairment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Differentiating amnestic mild cognitive impairment (aMCI) from normal cognition is difficult in clinical settings. Self-reported and informant-reported memory complaints occur often in both clinical groups, which then necessitates the use of a comprehensive neuropsychological examination to make a differential diagnosis. However, the ability to identify cognitive symptoms that are predictive of aMCI through informant-based information may provide some clinical utility in accurately identifying individuals who are at risk for developing Alzheimer's disease (AD).</p> <p>Methods</p> <p>The current study utilized a case-control design using data from an ongoing validation study of the Alzheimer's Questionnaire (AQ), an informant-based dementia assessment. Data from 51 cognitively normal (CN) individuals participating in a brain donation program and 47 aMCI individuals seen in a neurology practice at the same institute were analyzed to determine which AQ items differentiated aMCI from CN individuals.</p> <p>Results</p> <p>Forward stepwise multiple logistic regression analysis which controlled for age and education showed that 4 AQ items were strong indicators of aMCI which included: repetition of statements and/or questions [OR 13.20 (3.02, 57.66)]; trouble knowing the day, date, month, year, and time [OR 17.97 (2.63, 122.77)]; difficulty managing finances [OR 11.60 (2.10, 63.99)]; and decreased sense of direction [OR 5.84 (1.09, 31.30)].</p> <p>Conclusions</p> <p>Overall, these data indicate that certain informant-reported cognitive symptoms may help clinicians differentiate individuals with aMCI from those with normal cognition. Items pertaining to repetition of statements, orientation, ability to manage finances, and visuospatial disorientation had high discriminatory power.</p
    corecore