31 research outputs found

    Streamflow distribution of non-point source nitrogen export from urban-rural catchments in the Chesapeake Bay watershed

    Get PDF
    Nitrogen (N) export from urban and urbanizing watersheds is a major contributor to water quality degradation and eutrophication of receiving water bodies. Methods to reduce N exports using best management practices (BMP) have targeted both source reduction and hydrologic flow path retention. Stream restoration is a BMP targeted to multiple purposes but includes increasing flow path retention to improve water quality. As restorations are typically most effective at lower discharge rates with longer residence times, distribution of N load by stream discharge is a significant influence on catchment nitrogen retention. We explore impacts of urbanization on magnitude and export flow distribution of nitrogen along an urban-rural gradient in a set of catchments studied by the Baltimore Ecosystem Study (BES). We test the hypotheses that N export magnitude increases and cumulative N export shifts to higher, less frequent discharge with catchment urbanization. We find that increasing development in watersheds is associated with shifts in nitrogen export toward higher discharge, while total magnitude of export does not show as strong a trend. Forested reference, low-density suburban, and agricultural catchments export most of the total nitrogen (TN) and nitrate (NO3-) loads at relatively low flows. More urbanized sites export TN and NO 3- at higher and less frequent flows. The greatest annual loads of nitrogen are from less developed agricultural and low-density residential (suburban/exurban) areas; the latter is the most rapidly growing land use in expanding metropolitan areas. A simple statistical model relating export distribution metrics to impervious surface area is then used to extrapolate parameters of the N export distribution across the Gwynns Falls watershed in Baltimore County. This spatial extrapolation has potential applications as a tool for predictive mapping of variations in export distribution and targeting stream channel restoration efforts at the watershed scale

    Terrestrial modification of the Ivuna meteorite and a reassessment of the chemical composition of the CI type specimen

    Get PDF
    The rare CI carbonaceous chondrites are the most aqueously altered and chemically primitive meteorites but due to their porous nature and high abundance of volatile elements are susceptible to terrestrial weathering. The Ivuna meteorite, type specimen for the CI chondrites, is the largest twentieth-century CI fall and probably the CI chondrite least affected by terrestrial alteration that is available for study. The main mass of Ivuna (BM2008 M1) has been stored in a nitrogen atmosphere at least since its arrival at the Natural History Museum (NHM), London, in 2008 (70 years after its fall) and could be considered the most pristine CI chondrite stone. We report the mineralogy, petrography and bulk elemental composition of BM2008 M1 and a second Ivuna stone (BM1996 M4) stored in air within wooden cabinets. We find that both Ivuna stones are breccias consisting of multiple rounded, phyllosilicate-rich clasts that formed through aqueous alteration followed by impact processing. A polished thin section of BM2008 M1 analysed immediately after preparation was found to contain sulphate-bearing veins that formed when primary sulphides reacted with oxygen and atmospheric water. A section of BM1996 M4 lacked veins but had sulphate grains on the surface that formed in ≀6 years, ∌3 times faster than previous reports for CI chondrite sections. Differences in the extent of terrestrial alteration recorded by BM2008 M1 and BM1996 M4 probably reflect variations in the post-recovery curation history of the stones prior to entering the NHM collection, and indicate that where possible pristine samples of hydrated carbonaceous should be kept out of the terrestrial environment in a stable atmosphere to avoid modification. The bulk elemental composition of the two Ivuna stones show some variability due to their heterogeneous nature but in general are similar to previous analyses of CI chondrites. We combine our elemental abundances with literature values to calculate a new average composition for the Ivuna meteorite, which we find is in good agreement with existing compilations of element compositions in the CI chondrites and the most recent solar photospheric abundances

    Reforming Watershed Restoration: Science in Need of Application and Applications in Need of Science

    Full text link

    Studies on effect of different seasons on expression of HSP70 and HSP90 gene in sperm of Tharparkar bull semen

    No full text
    Objective: To assess the effect of different seasons on expression of HSP70 and HSP90 genes of spermatozoa in Indian breed, Tharparkar bull. Methods: Total numbers of 60 ejaculates from 3 bulls were collected through artificial vagina method twice a week during summer and winter season (30 ejaculates from each season). The semen samples were pooled and diluted with the standard TEYC extender and these semen samples were allowed to study the expression of HSP 70 and HSP 90 genes of spermatozoa with commercially available kit. Results: No significant difference was observed in spermatozoal mRNA expression of HSP 70 and HSP 90 during winter and summer season in this bull semen. But the mRNA expression of both HSP 70 and HSP 90 during summer season was found non-significantly higher in comparison to winter season. Conclusion: It was concluded from the present study that there was no significant difference in the mRNA expression of HSP 70 and HSP 90 between the winter and summer season, presence of similar type of stress resistant spermatozoa in Tharparkar bull semen and the semen can be cryopreserved throughout the year in this prestigious Indian breed

    Global river water quality under climate change and hydroclimatic extremes

    No full text
    Climate change and extreme weather events (such as droughts, heatwaves, rainstorms and floods) pose serious challenges for water management, in terms of both water resources availability and water quality. However, the responses and mechanisms of river water quality under more frequent and intense hydroclimatic extremes are not well understood. In this Review, we assess the impacts of hydroclimatic extremes and multidecadal climate change on a wide range of water quality constituents to identify the key responses and driving mechanisms. Comparison of 965 case studies indicates that river water quality generally deteriorates under droughts and heatwaves (68% of compiled cases), rainstorms and floods (51%) and under long-term climate change (56%). Also improvements or mixed responses are reported owing to counteracting mechanisms, for example, increased pollutant mobilization versus dilution during flood events. River water quality responses under multidecadal climate change are driven by hydrological alterations, rises in water and soil temperatures and interactions among hydroclimatic, land use and human drivers. These complex interactions synergistically influence the sources, transport and transformation of all water quality constituents. Future research must target tools, techniques and models that support the design of robust water quality management strategies, in a world that is facing more frequent and severe hydroclimatic extremes
    corecore