265 research outputs found

    An integrated approach to modelling the fluid-structure interaction of a collapsible tube

    Get PDF
    The well known collapsible tube experiment was conducted to obtain flow, pressure and materials property data for steady state conditions. These were then used as the boundary conditions for a fully coupled fluid-structure interaction (FSI) model using a propriety computer code, LS-DYNA. The shape profiles for the tube were also recorded. In order to obtain similar collapse modes to the experiment, it was necessary to model the tube flat, and then inflate it into a circular profile, leaving residual stresses in the walls. The profile shape then agreed well with the experimental ones. Two departures from the physical properties were required to reduce computer time to an acceptable level. One of these was the lowering of the speed of sound by two orders of magnitude which, due to the low velocities involved, still left the mach number below 0.2. The other was to increase the thickness of the tube to prevent the numerical collapse of elements. A compensation for this was made by lowering the Young's modulus for the tube material. Overall the results are qualitatively good. They give an indication of the power of the current FSI algorithms and the need to combine experiment and computer models in order to maximise the information that can be extracted both in terms of quantity and quality

    Exact General Relativistic Perfect Fluid Disks with Halos

    Get PDF
    Using the well-known ``displace, cut and reflect'' method used to generate disks from given solutions of Einstein field equations, we construct static disks made of perfect fluid based on vacuum Schwarzschild's solution in isotropic coordinates. The same method is applied to different exactsolutions to the Einstein'sequations that represent static spheres of perfect fluids. We construct several models of disks with axially symmetric perfect fluid halos. All disks have some common features: surface energy density and pressures decrease monotonically and rapidly with radius. As the ``cut'' parameter aa decreases, the disks become more relativistic, with surface energy density and pressure more concentrated near the center. Also regions of unstable circular orbits are more likely to appear for high relativistic disks. Parameters can be chosen so that the sound velocity in the fluid and the tangential velocity of test particles in circular motion are less then the velocity of light. This tangential velocity first increases with radius and reaches a maximum.Comment: 22 pages, 25 eps.figs, RevTex. Phys. Rev. D to appea

    Serum glial fibrillary acidic protein: a neuromyelitis optica spectrum disorder biomarker

    Get PDF
    OBJECTIVE: Blood tests to monitor disease activity, attack severity, or treatment impact in neuromyelitis optica spectrum disorder (NMOSD) have not been developed. This study investigated the relationship between serum glial fibrillary acidic protein (sGFAP) concentration and NMOSD activity and assessed the impact of inebilizumab treatment. METHODS: N-MOmentum was a prospective, multicenter, double-blind, placebo-controlled, randomized clinical trial in adults with NMOSD. sGFAP levels were measured by single-molecule arrays (SIMOA) in 1,260 serial and attack-related samples from 215 N-MOmentum participants (92% aquaporin 4-immunoglobulin G-seropositive) and in control samples (from healthy donors and patients with relapsing-remitting multiple sclerosis). RESULTS: At baseline, 62 participants (29%) exhibited high sGFAP concentrations (≥170 pg/ml; ≥2 standard deviations above healthy donor mean concentration) and were more likely to experience an adjudicated attack than participants with lower baseline concentrations (hazard ratio [95% confidence interval], 3.09 [1.6-6.1], p = 0.001). Median (interquartile range [IQR]) concentrations increased within 1 week of an attack (baseline: 168.4, IQR = 128.9-449.7 pg/ml; attack: 2,160.1, IQR = 302.7-9,455.0 pg/ml, p = 0.0015) and correlated with attack severity (median fold change from baseline [FC], minor attacks: 1.06, IQR = 0.9-7.4; major attacks: 34.32, IQR = 8.7-107.5, p = 0.023). This attack-related increase in sGFAP occurred primarily in placebo-treated participants (FC: 20.2, IQR = 4.4-98.3, p = 0.001) and was not observed in inebilizumab-treated participants (FC: 1.1, IQR = 0.8-24.6, p > 0.05). Five participants (28%) with elevated baseline sGFAP reported neurological symptoms leading to nonadjudicated attack assessments. INTERPRETATION: Serum GFAP may serve as a biomarker of NMOSD activity, attack risk, and treatment effects. ANN NEUROL 2021;89:895-910

    Exact General Relativistic Thick Disks

    Get PDF
    A method to construct exact general relativistic thick disks that is a simple generalization of the ``displace, cut and reflect'' method commonly used in Newtonian, as well as, in Einstein theory of gravitation is presented. This generalization consists in the addition of a new step in the above mentioned method. The new method can be pictured as a ``displace, cut, {\it fill} and reflect'' method. In the Newtonian case, the method is illustrated in some detail with the Kuzmin-Toomre disk. We obtain a thick disk with acceptable physical properties. In the relativistic case two solutions of the Weyl equations, the Weyl gamma metric (also known as Zipoy-Voorhees metric) and the Chazy-Curzon metric are used to construct thick disks. Also the Schwarzschild metric in isotropic coordinates is employed to construct another family of thick disks. In all the considered cases we have non trivial ranges of the involved parameter that yield thick disks in which all the energy conditions are satisfied.Comment: 11 pages, RevTex, 9 eps figs. Accepted for publication in PR

    Entanglement between Demand and Supply in Markets with Bandwagon Goods

    Get PDF
    Whenever customers' choices (e.g. to buy or not a given good) depend on others choices (cases coined 'positive externalities' or 'bandwagon effect' in the economic literature), the demand may be multiply valued: for a same posted price, there is either a small number of buyers, or a large one -- in which case one says that the customers coordinate. This leads to a dilemma for the seller: should he sell at a high price, targeting a small number of buyers, or at low price targeting a large number of buyers? In this paper we show that the interaction between demand and supply is even more complex than expected, leading to what we call the curse of coordination: the pricing strategy for the seller which aimed at maximizing his profit corresponds to posting a price which, not only assumes that the customers will coordinate, but also lies very near the critical price value at which such high demand no more exists. This is obtained by the detailed mathematical analysis of a particular model formally related to the Random Field Ising Model and to a model introduced in social sciences by T C Schelling in the 70's.Comment: Updated version, accepted for publication, Journal of Statistical Physics, online Dec 201

    Grain Surface Models and Data for Astrochemistry

    Get PDF
    AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∼25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions

    Serum neurofilament light chain levels at attack predict post-attack disability worsening and are mitigated by inebilizumab: analysis of four potential biomarkers in neuromyelitis optica spectrum disorder

    Get PDF
    OBJECTIVE: To investigate relationships between serum neurofilament light chain (sNfL), ubiquitin C-terminal hydrolase L1 (sUCHL1), tau (sTau) and glial fibrillary acidic protein (sGFAP) levels and disease activity/disability in neuromyelitis optica spectrum disorder (NMOSD), and the effects of inebilizumab on these biomarkers in N-MOmentum. METHODS: N-MOmentum randomised participants to receive inebilizumab or placebo with a randomised controlled period (RCP) of 28 weeks and an open-label follow-up period of ≥2 years. The sNfL, sUCHL1, sTau and sGFAP were measured using single-molecule arrays in 1260 scheduled and attack-related samples from N-MOmentum participants (immunoglobulin G (IgG) autoantibodies to aquaporin-4-positive, myelin oligodendrocyte glycoprotein-IgG-positive or double autoantibody-negative) and two control groups (healthy donors and patients with relapsing-remitting multiple sclerosis). RESULTS: The concentration of all four biomarkers increased during NMOSD attacks. At attack, sNfL had the strongest correlation with disability worsening during attacks (Spearman R(2)=0.40; p=0.01) and prediction of disability worsening after attacks (sNfL cut-off 32 pg/mL; area under the curve 0.71 (95% CI 0.51 to 0.89); p=0.02), but only sGFAP predicted upcoming attacks. At RCP end, fewer inebilizumab-treated than placebo-treated participants had sNfL>16 pg/mL (22% vs 45%; OR 0.36 (95% CI 0.17 to 0.76); p=0.004). CONCLUSIONS: Compared with sGFAP, sTau and sUCHL1, sNfL at attack was the strongest predictor of disability worsening at attack and follow-up, suggesting a role for identifying participants with NMOSD at risk of limited post-relapse recovery. Treatment with inebilizumab was associated with lower levels of sGFAP and sNfL than placebo. TRIAL REGISTRATION NUMBER: NCT02200770

    Electrovacuum Static Counterrotating Relativistic Dust Disks

    Get PDF
    A detailed study is presented of the counterrotating model (CRM) for generic electrovacuum static axially symmetric relativistic thin disks without radial pressure. We find a general constraint over the counterrotating tangential velocities needed to cast the surface energy-momentum tensor of the disk as the superposition of two counterrotating charged dust fluids. We also find explicit expressions for the energy densities, charge densities and velocities of the counterrotating fluids. We then show that this constraint can be satisfied if we take the two counterrotating streams as circulating along electro-geodesics. However, we show that, in general, it is not possible to take the two counterrotating fluids as circulating along electro-geodesics nor take the two counterrotating tangential velocities as equal and opposite. Four simple families of models of counterrotating charged disks based on Chazy-Curzon-like, Zipoy-Voorhees-like, Bonnor-Sackfield-like and Kerr-like electrovacuum solutions are considered where we obtain some disks with a CRM well behaved. The models are constructed using the well-known ``displace, cut and reflect'' method extended to solutions of vacuum Einstein-Maxwell equations.Comment: 19 pages, 16 figures, revtex
    corecore