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Exact general relativistic perfect fluid disks with halos
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Using the well-known “displace, cut, and reflect” method used to generate disks from given solutions of
Einstein’s field equations, we construct static disks made of a perfect fluid based on vacuum Schwarzschild’s
solution in isotropic coordinates. The same method is applied to different exact solutions to Einstein’s equa-
tions that represent static spheres of perfect fluids. We construct several models of disks with axially symmetric
perfect fluid halos. All disks have some common features: surface energy density and pressure decrease
monotonically and rapidly with the radius. As the “cut” parameterdecreases, the disks become more
relativistic, with the surface energy density and pressure more concentrated near the center. Also, regions of
unstable circular orbits are more likely to appear for high relativistic disks. Parameters can be chosen so that
the sound velocity in the fluid and the tangential velocity of test particles in circular motion are less than the
velocity of light. This tangential velocity first increases with radius and reaches a maximum.
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[. INTRODUCTION method to spherically symmetric solutions of Einstein’s field
equations in isotropic coordinates to generate static disks
Axially symmetric solutions of Einstein’s field equations made of aperfect fluid i.e., with radial pressure equal to
corresponding to disklike configurations of matter are oftangential pressure and also disks of perfect fluid surrounded
great astrophysical interest, since they can be used as mod#l¥ @ halo made of perfect fluid matter.
of galaxies or accretion disks. These solutions can be static The article is organized as follows. Section Il gives an
or stationary and with or without radial pressure. Solutionsoverview of the displace, cut, and reflect method. Also we
for static disks without radial pressure were first studied byPresent the basic equations used to calculate the main physi-
Bonnor and Sackfielfil], and Morgan and Morgaf®], and cal variables of the disks. In Sec. Ill we apply the formalism
with radial pressure by Morgan and Morgg8i. Disks with O obtain the simplest model of the disk, which is based on
radial tension have been considered[4), and models of Schwarzschild’s vacuum solution in isotropic coordinate.
disks with electric fieldg5], magnetic fieldd6], and both The generated clags of disks is made of_ a perfect fluid with
magnetic and electric fields have been introduced recentiy/ell behaved density and pressure. Section IV presents some
[7]. Solutions for self-similar static disks were analyzed bymodels of disks with halos obtained from different known
Lynden-Bell and Pineau[i8] and Lemog9]. The superposi- €Xact solutions of Einstein’s field equations for static spheres
tion of static disks with black holes were considered by Le-Of perfect fluid in isotropic coordinates. In Sec. V we give
mos and Letelier[10-19 and Klein [13]. Also Bicak, some examples of disks with halo generated from spheres
Lynden-Bell, and Kat£14] studied static disks as sources of composed of fluid layers. Section VI is devoted to discussion
known vacuum spacetimes and’ Bic Lynden-Bell, and Pi- ©f the results.
chon[15] found an infinite number of new static solutions.
For a recent survey on relativistic gravitating disks, [sk&]. [Il. EINSTEIN EQUATIONS AND DISKS

The principal method to generate the above mentioned For a static, spherically symmetric spacetime the general

solution is the “displace, cut and reflect” method. One of theIine element in isotropic spherical coordinates can be cast as
main problems with the solutions generated by using this pic sp

simple method is that usually the matter content of the disk is ds?=e"Ndt2—erI[dr2+r2(d6?+sirfode?d)]. (1)
anisotropic; i.e., the radial pressure is different from the azi-

muthal pressure. In most of the solutions the radial pressurin cylindrical coordinates t(R,z,¢) the line element(1)
is null. This made these solutions rather unphysical. Evenakes the form

though, one can argue that when no radial pressure is present

stability can be achieved if we have two circular streams of ds?=e'RAd?— ! RA(dR?+dZ+R%dp?). (2
particles moving in opposite directiorfthe counterrotating The metric of the disk will be constructed using the well
hypothesis, see for instanf&4]). known displace, cut, and reflect method that was used by

In this article we apply the displace, cut, and reflectKuzmin[17] in Newtonian gravity and later in general rela-
tivity by many authord4-16]. The material content of the
disk will be described by functions that are distributions with

*Email address: danielvt@ifi.unicamp.br support on the disk. The method can be divided in the fol-
"Email address: letelier@ime.unicamp.br lowing steps that are illustrated in Fig. 1. First, in a space
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(b)

FIG. 1. An illustration of the displace, cut, and reflect method ) ) )
for the generation of disks. Ifa) the spacetime with a singularity is FIG. 2. An illustration of the displace, cut, and reflect method
displaced and cut by a plan@lotted ling: in (b) the part with for the generation of disks with halos. In A the sphere of perfect

singularities is disregarded and the upper part is reflected on thiuid is displaced and cut by a plaridotted ling; in (b) the lower
plane. part is disregarded and the upper part is reflected on the plane.

wherein we have a compact source of gravitational field, wepace that contains the center of the sphere is disregarded.
choose a surfacén our case, the plane=0) that divides  After the inversion of the remaining space, we end up with a
the space in two pieces: one with no singularities or sourcegisk surrounded by a cap of perfect fluid. The properties of
and the other with the sources. Then we disregard the part @he inner part of the disk will depend on the internal fluid
the space with singularities and use the surface to make agy|ytion, but if the internal spherical fluid solution is joined

inversion of the nonsingular part of the space. This results iR, e standard external Schwarzschild solution, the physical
a space with a singularity that is a delta function with SUpporbroperties of the outer part of the disk will be those origi-

on z=0. This procedure is mathematically equivalent t0 hated from Schwarzschild's vacuum solution.

e oo v ek frs sk s s of 1 BOUOPC coorinales he matching at he boundary o
the fluid sphere leads to four continuity conditions: metric

Sinced,|z|=29(z)— 1 andd,jz|=248(z), whered(z) and . N N . - i .
5(2) are, respectively, the Heaviside function and the Diracfunctlonse ande” together with their first derivatives with

distribution. Therefore the Einstein field equations will sepa-reSpeCt to the radial coordinate should be continuous across
rate in two different piecefl8]: one valid forz#0 (usual the boundary. In addition, to haye a compact body the pres-
Einstein's equationsand the other involving distributions sure at the surface of fche matenall sphere has to drop to zero.
with an associated energy-momentum teriEgy=Q,,3(2) Also to have a meaningful solution the velocity of sound,

2_ . .
with support onz=0. For metric(2), the nonzero compo- v —dp/o!p, ShOUId be_ restricted to _the mter\_/al /<1 _
The Einstein equations for a static, spherically symmetric
nents ofQ,, are

spacetime in isotropic coordinates for a perfect fluid source

1 give us that density and pressurp are related to the metric
Qi= E[—bZZJr 9“4 bR+b2+b?)], (3)  functions by
QR-Qe= [ b+ gbi+bE+bD], (4 e, 1 2\
R Xe™ 16m tooR R p=—g- | \'T Z(>\')2+ T} )

where b,, denotes the jump of the first derivatives of the
metric tensor on the plane=0,

e_)\ 1 1\2 1 ror 1 ’ ’
bab=Gab,zlz=0+ ~ Jab,zl z=0- ) P=g- |z TH SNV (N )

()

and the other quantities are evaluatedat™. The “true”

surface energy-momentum tensor of the disk can be written

as S,,=V—9,,Qap, thus the surface energy densityand ~ Where primes indicate differentiation with respectrto

the radial and azimuthal pressures or tensi@sread Also static spheres composed of various layers of fluid
can be used to generate disks with halos of fluid layses

o=v-9,Q!, P=—V-9g,08=-/-g,4 ¢. (6) Fig. 3. The disk will then be composed of different axial

symmetric “pieces” glued together. The matching conditions

Note that when the same procedure is applied to an axiallat the boundary of adjacent spherical fluid layers in isotropic

symmetric spacetime in Weyl coordinates we h@),§=0, coordinates involves four continuity conditions: the two met-

i.e., we have no radial pressure or tension. ric functionse® ande”, the first derivative oh with respect

This procedure in principle can be applied to any spaceto the radial coordinate, and the pressure should be continu-

time solution of the Einstein equations with or without ous across the boundary. At the most external boundary, the

source(stress tensgr The application to a static sphere of metric functionse* and e” and their first derivatives with

perfect fluid is schematized in Fig. 2. The sphere is displacedespect to the radial coordinate should be continuous across

and cut by a distancaless than its radius, . The part of the the boundary; also the pressure there should go to zero.
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Ve m(4yJR?+a’—m) 13
" 3(m-2R?+a?)?’

The conditionV2<1 (no tachyonic mattg@rimposes the in-

equalitiesm< JR%+a? or m>3R?+a?. If the pressure
condition and the speed of sound less than the speed of light

(b) condition are to be simultaneously satisfied, them
<R%+a?. This inequality will be valid in all the disk if

<a.
With the presence of radial pressure one does not need the
assumption of streams of rotating and counterrotating matter
usually used to explain the stability of static disk models.
However, a tangential velocitgrotation profile can be cal-
culated by assuming that a test particle moves in a circular
geodesic on the disk. We tacitly assume that this particle only
We first apply the displace, cut, and reflect method tointeracts gravitationally with the fluid. This assumption is
generate disks discussed in the previous section and depictedlid for the case of a particle moving in a very diluted gas
in Fig. 1 to the Schwarzschild metric in isotropic coordinatessuch as the gas made of stars that models a galaxy disk.

FIG. 3. An illustration of the displace, cut, and reflect methodm
for the generation of disks with various layers of halos(dnthe
sphere with different layers of fluid is displaced and cut with a
plane(dotted ling; in (b) the field is reflected on the plane.

Ill. THE SIMPLEST DISK

(t,r,0,9), The geodesic equation for tiiecoordinate obtained from
metric (2) is
m 2
(1‘5) m|* 'R+ 5(e") pt?~ 5(e") p(R?+2%) — 5(e'R?) rg?=0.
dSZZTdIZ—(l—FE (14
1+ — ) ) L .
2r For circular motion on the=0 plane,R=R=0 andz=0,
X [dr2+r2(d62+si0de?)]. 9 then Eq.(14) reduces to
"2 v
Expressing solutiori9) in cylindrical coordinates, and using ‘.’;:ﬂ_ (15)
Egs.(3)—(6), we obtain a disk with surface energy density t2 (e”RZ)YR

and radial and azimuthal pressufes tension$ P given by
The tangential velocity measured by an observer at infinity is

4ma 10 then
o= ]
m(m+2RZ+a?)3 do\2 N oy
2 g(p(p ¢ 2 € (e ),R
ve= gl dt) TR enreen o (16
. om?a . Ott e’(R%e") g
-~ m(m+2VR+ad)3(m-2VR+a?) D From the metric on the disk,
2
The total mass of the disk can be calculated with the help of 1 m
Eq. (10): 2. JR?+ a2 m 4
e'= 5 and e}\: 1+T s
o (27 m 14 m 2\/R +a
MZJO JO (T\gRRg‘p‘ded(p:E(m‘l‘4a) (12) 2 /R2+a2
17
_ Equatlon(lc_))_shows that the disk’s §yrface energy densnyWe find that Eq(16) can be cast as
is always positivelweak energy condition Positive values
(pressurg for the stresses in azimuthal and radial directions mE2
are obtained ifn<2\R?+a?. The strong energy condition v§=
0+P,,+Prr=0+2P>0 is then satisfied. These proper- 1— R24+ 52)324 m 2_Re
ties characterize a fluid made of matter with the usual gravi- 2 JR2+ a2 ( &) 2 (a )
tational attractive property. This is not a trivial property of (18)

these disks since it is known that the displace, cut, and reflect
method sometimes gives disks made of exotic matter such @&or R>a, Eq. (18) goes asv.=(m/R)*?, the Newtonian
cosmic strings, see for instanfE9]. circular velocity.

Another useful parameter is the velocity of sound propa- To determine the stability of circular orbits on the disk’s
gation, V, defined asv?=dP/do, which can be calculated plane, we use an extension of Rayleidt0,21] criteria of
using Egs(10) and(11): stability of a fluid at rest in a gravitational field,
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FIG. 4. (a) The surface energy density, (b) pressure®, (c) sound velocityV, and(d) tangential velocity . (rotation curve or rotation
profile) with m=0.5 anda=0.6,0.8,1.0, and 1.2 as functions ®& R/m. We use geometric unit§=c=1.

dh m 2
hﬁ>0, (19 2\/5R2 1+ (R?+a2)4
2\R?*+a?
whereh is the specific angular momentum of a particle on \/4(R2+a2)2—8mR2\/m+ m2(R2—a?) '
the disk’s plane: (23)
do de dt The stability criterion is always satisfied fafm=1.016.
h=—0pp—=—Gpo— == (20) In Figs. 4a)—4(d) we show, respectively, the surface en-
ds dt ds ergy density, pressures, the sound velocity, and curves of the
tangential velocity(rotation curves[Eq. (18)] with m=0.5
Using Eq.(15) and the relation anda=0.6,0.8,1.0, and 1.2 as functionsR¥ R/m. Figures
5(a)—5(c) display, respectively, the surface energy density,
dt\ 2 do|? pressures, and sound velocity with parametets1.0 and
1=e”<d—s) z A(E) : (2)  m=0.2,0.4,0.6, and 0.8 as as functionsFof R/m. We see
that the first three quantities decrease monotonically with the
radius of the disk, as can be checked from E4$), (11),
one obtains the following expression for and (13). Energy density decreases rapidly enough in prin-
ciple, to, define a cut off radius and consider the disk as
(&) finite.
h=R?% \/ - . (22
e’(R%") r—R%eM(e") r IV. DISKS WITH HALOS
Now we study some disks with halos constructed from
For functions(17), Eq. (22) reads several exact solutions of the Einstein equations for static
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FIG. 5. (a) The surface energy density, (b) pressure®, and(c) sound velocityV with a=1.0 andm=0.2,0.4,0.6, and 0.8 as functions
of R=R/a.

spheres of perfect fluid. A survey of these classes of solutiongoes over into the external Schwarzschild metric when
is presented i122]. =2A/\Jk. The density, pressure, and sound velocity are

given by
A. Buchdahl’s solution
The first situation that we shall study is similar to the one p= Ak ,
depicted in Fig. 2 wherein we start with a sphere of perfect 2m(A+\1+kr?)®

fluid. This case will not be exactly the same as the one pre-

sented in the mentioned figure because the sphere has no KA2

boundary. Hence the generated disk will be completely im- p= , (25
mersed in the fluid. An example of exact solution of the 27(— A+ 1+Kr?)(A+1+kr?)®

Einstein equations that represent a fluid sphere with no

boundary is the the Buchdahl solution that may be regarded 2A(—2A+3y1+kr?)

as a reasonably close analog to the classical Lane-Emden V2= . (26)

15A—\1+kr?)?

index 5 polytropd 23]. The metric functions for this solution

are: . . -
The condition V<1 is satisfied for A<[(18—/39)/
. A 2 1%J;+kﬁ. _
T 4 Using Eqg.(24) and Egs.(3)-(6), we get the following
eV= Vitkr =] 1+ A (24) expressions for the energy density, pressure, and sound ve-
A ’ Ji+kr?) ' locity of the disk:

1+ ——
V1+kr?

akA

7 A A+ ITk(R+aD) P

(27)

whereA andk are constants. Far from the origin the solution
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FIG. 6. (a) The surface energy density, Eq. (27), (b) the pressurd?, Eq. (28), (c) the velocity of soundv, Eq. (29), and (d) the
tangential velocity ., Eq. (30), for the disk withA=0.6 andk=1 for a=1, 2, and 3 as functions d&t=R/m.

A<1.\1+ka? Figures §a)—6(d) show, respectivelyg, P,

V, and rotation curves, E¢30), as functions oR=R/m for
the disk calculated from Buchdahl's solution.

In Figs. 7a) and 1b) we show, respectively, the densjy
together with pressurp, and sound velocity of the halo
along the axiz for A=0.6;k=1 anda=1. Note that in this
solution there is no boundary of the fluid sphere: the disk is
completely immersed in the fluid.

The tangential velocity . calculated from metric coeffi-
cients(24) is

akA2

P ALK )| [At VLT KR
(28)

, Al—A+2J1+k(R°+a%)]

V2= . (29)

3[A—1+k(R*+a?)]?

The conditions V<1 and P>0 are both satisfied if

- 2AKR? 30
e (1= AT K(RZ+ @) {[ 1+ k(R2+a2) |32+ A[ 1+ k(a?—R?) ]}
For R>a, Eq.(30) goes aw .= (2A)Y%(RY%Y4. The specific angular momentum follows from E¢&2) and (24):
2
A
V2AKR| 1+ ————| [1+k(R?+a?)]¥4
V1+k(R*+a?)
h (32

VLt KR+ a?) P~ 4AKRAVL T K(RE+ ad) — AZ1 +k(a?—R?)]
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(b)

T

FIG. 7. (a) The densityp and pressur@ [Eq. (25)] and (b) the velocity of soundyV [Eq. (26)] for the halo withA=0.6;k=1and

a=1 along thez axis.

B. Narlikar-Patwardhan-Vaidya solutions 1a and 1b

Now we shall study the generation of a disk solution with
a halo exactly as the one depicted in Fig. 2. We start with

solution of the Einstein equations in isotropic coordinates

which represents a sphere with radiysof a perfect fluid
that onr=ry will be continuously matched to the vacuum

Schwarzschild solution. Narlikar, Patwardhan, and Vaidya

(NPV) [24] gave the following two exact solutions of the

Einstein equations for perfect fluid static spheres character-

ized by the metric functions\(v.,) and (\,v1y),

er=Crk, (32)
eVla= (Alar17n+k/2+ Blarl+n+k/2)2 for —24 \/§<k$0,
(33

e”lt)zr\““?[AlbﬂL Bygn(r)]? for k=—2+ J2, (39
where A;a,A1p,B1a,B1p, and C are constants anch
=1+ 2k+k?/2. We shall refer to these solutions as NPV
la and NPV 1b, respectively.

VZ = ! {A7]—3k?+8(n—1)
L k(A (A By
+4k(n—3)]— B2 s *"[3k?+8(1+n)+4k(n+3)]
—2A; B1 2 3k(k+4)+8(1-n?)]}, (39
2B2 2
V3= — 39
(At Bygn(r)]? (%9

The condition of continuity of the metric functiona (v)
given by Eqgs(32)—(34) and the corresponding functions in
Eqg. (9) at the boundary =r, leads to the following expres-
sions:

The density, pressure, and sound velocity for the solutions

(N,v19 and (\,vqp) will be denoted by f,p1a,Vis) and
(psP1b,V1ip), respectively. We find

_ —k(k+4)r2k
p= 327C

(39

1
- 321TCI’2+k(A1a+ Blar

Pia ) {A1d3K*+8(1—n)

—4k(n—3)]+B;{3k?*+8(1+n)

+4k(n+3)]r2", (36)

A+ Bn(r)+2y2By,
167 C[A;,+Byn(r)]

P1p=

(37

08401

ISR S ' 40
o, kra Mo kra) (40
3k?+8(1+n)+4k(n+3)
la— 16nri K2 '
3k?+8(1—n)—4k(n—3)
la— 1+n+k/2 ' (41)
lénrj
2\2+1In(ry,) 1
1b— — 4[‘%/\? ’ lb:4rgl\@- (42)
V14 has its maximum at=0 andV,, atr=r,. Condition

Vi(rp) <1 is satisfied ifr,<4"2,

Using Eqgs.(32)—(34) in Egs.(3)—(6), we get the follow-
ing expressions for the energy density, pressure and sound
velocity of the disk:

ka

=T 4 CRITKA’ (43)
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FIG. 8. (a) The surface energy density[Eq. (43)], (b) the pressur® [Eq. (44)], and(c) the velocity of soundy [Eq. (46)] for the disk
with k= —1/2 andr,=2 for a=0.5,1.0, and 1.5 as functions Bf=R/m.

- a [Aj(k—n+1)+B(k+n+1)R"]

P ’
¥ 4m ORI [Arat BiR"] w
44

a
47\ CRY2H 2 2A 4+ B1n(R)]

+2Bypt+ Byy(v2-1)In(R)], (45)

[2A.4(V2—1)

P1b

1
Vi —B2,R"(k?+5k
MKkt 4)[ AR TV BlaR“’Z]Z[ e

+nk+4n+4)+A2 R "(—k?—5k+nk+4n—4)
+2A, B —k?—5k+4n?—4)], (46)

1
V2= B2, \2In%(R)+ 2B,y 2B
1b 2(2AL5+ Blbln(R))z[ 1b ( 16(2B1p

+B1pV2+ 2A1572)IN(R) + 4A,,B1 12+ 12)
+4.2A% +8B2], (47

whereR=R?+a?. V,;,andV,, have their maximum values

at R=0. Because the expressions are rather involved, the
restrictions on the constants, to ensure that the velocities are
positive and less than one, are best made graphically. The

curves ofo, P, andV as functions oR=R/m with param-
etersk=—1/2;r,=2 fora=0.5,1.0 and 1.5 are displayed in
Figs. 8a)—8(c), respectively. Figures (8—9(b) show the
densityp, pressurep, and velocity of soundy for the halo
with parameter&= —1/2;r,=2, fora=0.5 along the axig.
The same physical quantities are shown in FiggatalQ(c)
and 11a) and 11b) with k= —2+ /2. We note thatr andP
are continuous at the boundary between the internal and ex-
ternal parts of the disk, but the velocity of sound has a dis-
continuity.

The tangential velocity is given by

5 ,A1{1-N+k/2)+B{1+n+k/2)(R*+a?)"

Pela™ [Arat Br R2+a2)"[RY(k+2) + 2a2]
(48
V2, —R? 2\2A;,+ B[4+ 2In(R2+a?)] 9

[2A;p+ By In(R2+a?)][2a2+ 2R?]’
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++4/2 andr,=2 for a=0.5 along thez axis.
and the specific angular momentum

hla: \/ERZ(R2+a2)k/4

5 \/Ala(l—n+k/2)+Bla(1+ n+k/2)(R2+a2)"

A a2+ nR%)+ B, (a?—nR?)(R?*+a?)"

hyp= VCRY(R2+a2)~ L2+ 214

y \/ 2Byt V2[ Ayt Bign(VRZ+a?)]
28 Ap+ Bin(VR?+a?)]— 2B, R?

(50

(51)

13(a) and 13b) with k= —2+ /2. Fora=0.5 the disks have
a small region of unstable orbits immediately after the

“boundary radius.”

C. Narlikar-Patwardhan-Vaidya solutions 2a and 2b

As in the previous sections we study the generation of a
disk solution with a halo exactly as the one depicted in Fig.
2. We also start with a solution of the Einstein equations in
isotropic coordinates, which represents a sphere of ragius
of a perfect fluid that om=r, will be continuously matched
to the vacuum Schwarzschild solution. We will use two other
solutions found by Narlikar, Patwardhan, and Vaidyd]
that we shall refer as NPV 2a and NPV 2b, respectively,
which are characterized by the metric functions,,) and

In Figs. 1Za) and 12b), the curves of tangential velocity (. v2p),

[Eq. (48)] and h(dh/dR) [Eq. (50)], respectively, are dis-

played as functions o0R=R/m with k=—1/2 andr,=2;a el = (52)
— it ; ; 1+n/2 1-n/2y2’
=0.5,1.0, and 1.5. The same quantities are shown in Figs. (Aqr + A,r )
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FIG. 12. () The tangential velocity ., [Eq. (48)] and (b) the curves ofh(dh/dR) [Eq. (50)] with k=—1/2 andr,=2 for a
=0.5,1.0, and 1.5 as functions Bfi= R/m. A region of instability appears on the disk generated with paranaete.5.
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(Blarl+X/2+ Bzarl*X/Z)Z

eV2a=
(Alrl+n/2+ Azrl—n/Z)Z
for \2<n=2, (53
B,p+Boyn(r)]?
oVabe [Bip+Bapin(r)] for n=12, 54)

(Alrllxs“?_'_ Azr 71/&7)2

where theA’s andB’s are constants ang=+/2nZ—4. The

solution (\,v,,) with n=2 corresponds to Schwarzschild’s
internal solution in isotropic coordinatésee, for instance,
Ref.[22]). This solution has constant density and is confor-\/2

mally flat whenB,,=0.

The density, pressure, and sound velocity for the solutions

(\,vo9 and (\,v,,) will be denoted by g,p,as, Vo, and
(psP2b, Vo), respectively. We find

1
[(4—n?)(Ar"2+ A,r ~"2)24+12n°AA,],

P=35- (55

1
P2a= 35— | ~120°AA,+ (302 = 4)(Ayr"2+ Apr M%)

2nX(B,,— B, 4%
N (Boa=B1d™)

Byt ByJ* (A=A D).
2a 1

(56)

= 2.2
P2b= 16T B+ Bogn(r)] 1L D10 BaoN(D (A

+AZr T2 10A,A,) + 2V2B, (A2 T 2— A2r )y
(57

1
(4—n?)(AZr"—A%r ~")(Bya+ B1d™)?

2 _
V2a_

X{B5JATr"(3n%+2nx—4)+A5r "

X (—3n2+2nx+4)]+B2 r > A2r"(3n?—2nx—4)

+ A2 "(—3n2-2nx+4) ]+ 2B, Bos

X[AZr(3n%—2x2—4)+AJr (= 3n?+2x2+4)]},
(58

1
[B1p+ Bogn(r)12(A3rZ— AZr—?)
X (A2r ([ B+ Bodn(r) ][ Byp+ Bogn(r) — 24/2B,y]
+2B23 — AZr ([ Byt Boyn(r)1[Bypt Boyn(r)

+242B,]+2B2)).

2b™

(59

The condition of continuity of the metric functiona (v)
given by Egs.(52)—(54) and the corresponding functions in
Eq. (9) at the boundary =r, leads to the following expres-
sions:

A 1 {m (1 n mn) 60
1= 3|5 " To et
m 2 2 A4r
2+n/2 b
+
nrg (1 2rb)
A, = - m+ +1+ 61
= w2 2T T (Y
2ry
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2m m?
—4rdl1— —|-m?+2xri 1- —
r

b 4r§
Bia= m\ 4 ’
4Xl'g+x,2 1+ ?)
b
(62
2m m?
4r§(1—— +m?+2xrp| 1-—
Iy 4ry
BZa: m 4 ’ (63)
Axrd? 14 —
b 2ry
Bip= - 2l4rz—m?
3 _
4ryl 1+ o1
+(m?=8mry+4rd)in(ry)], (64)
m?—8mr,+4r2
BZb: — ﬁ (65)
ardl 1+ —
b 2rb

V5, has its maximum at=r,, andV,, atr=0.
Using Eqgs.(52)—(54) in Egs.(3)—(6), we get the expres-

sions for the energy density, pressure, and sound velocity of

the disk:

a
o= E[Al(z_’_ n)R71/2+n/4+A2(2_n)Rfl/27n/4],

(66)
a
Paa=— 8r(By R V21 B, R 124 [B1Ai(2+2n
—X)R WAL By Ay (2—-2n—x)R XM
+BoAL(2+2n+x)R (XA
+ By Ay (2—2n+x)R ~ x4 (67)

> _p2 A BN+ X)R¥?+ By (n—Xx)]— ARV B1{n—X)R?+ B, n+x)]

PHYSICAL REVIEW D68, 084010 (2003

_ a V2
P2v= = 428y, Bygn()] (21 V2B

XR—1/2+\37/4+ 2(1_ \/E)BlezR—l/Z—\@M
+[(1+ \/E)In(R)_Z]BZbAlRil/% 214

+[(1=V2)In(R) — 2]BopA,R ~¥27 24, (68)
> 1
0 2(4-n)[Ay+ AR "?|[B,ut By R )
X{A;R"[B2(n—2)(2n—x+2)R*+B3(n—2)
X (2n+Xx+2)— 4B Brf —n?+n+x2+2)R¥?
+A,[BI(n+2)(2n+x—2)R*+ B3, (n+2)
X (2n—x—2)—4B; Bsa
X (—n?=n+x2+2)R¥?)}, (69)
V2o 2B1p+ 2B+ Bogn(R) VEINR)
2[2B1p+ Bon(R) 1A+ AR ]
—41B, A R Y2 [V2IN(R) +41B,A,
+242B1{ AR 2= A L, (70)

whereR = R?+a?. The curves ofr, P, andV as functions of

R=R/m with parametera=1.8m=0.5, andr,=2 for a
=0.5,1.0, and 1.5 are displayed in Figs(d4-14(c), respec-
tively. Figures 1%a)—15b) show the density, pressure,
and velocity of soundyV for the halo with parametera
=1.8,m=0.5,r,=2, fora=0.5 along thez axis. The same
physical quantities are shown in Figs. 16 and 17 with
=\2.
The tangential velocity . is given by

Veog= , (71
cza [B1 R 2+ B, J[A R "2(222—nR2) + Ay(2a2+ NR?)]

o _ ppPel2V2Bint Bal 44 2IN(R)J} — AR 25212815t Byl — 4+ \2In(R)]} 72

2 [2B15+ Bodn(R)I[A R 2227 \2R?) + A(28%+ \2R?)] ’

and the specific angular momentum
R2R71/2+n/4
hoa= A [Bi{n+X)R*?+B,(n—x

9 ARV Ag) P2\, q 2aT XROR 1 By 2at r ) A ) 2dn =]

— AR B1{n—x)R¥2+B,(n+x)]}'?, (73
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FIG. 14. (a) The surface energy density[Eq. (66)], (b) the pressur® [Eg. (67)], and(c) the velocity of soundy [Eq. (69)], for the disk
with n=1.8;m=0.5, andr,=2 fora=0.5,1.0 and 1.5 as functions Bf=R/m.
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RZ'R —1/2+2/4
h

In Figs. 18a) and 18b), the curves of tangential velocities,

" [AR 72+ A,132\/487B |+ 2By — 2RZ+ aZn(R)]
— AR P4 2\2B 1yt Byl — 4+ V2In(R)THY2

(A2{2\2B 1+ By 4+ 2In(R) 1}

(74)

Eq. (71), andhdhdR, Eq. (73), respectively, are displayed

as functions oR=R/m with n=1.8, m=0.5, andr,=2 for
a=0.5, 1.0, 1.5. Figure 19 shows the same gquantities wit
n=+2. Unlike solution 2, no unstable circular orbits are

present for the disks constructed with these parameters.

V. DISKS WITH COMPOSITE HALOS
FROM SPHERICAL SOLUTIONS

We study two examples of disks with halos constructed
from spheres of fluids with two layers as the ones depicted in

(B1r?+B,)? 1

v__ N
(Ar?+A,)?

(Ar2+A,)2

A. Internal Schwarzschild solution and Buchdahl solution

Let us consider that a fluid sphere is formed by two lay-
rs: The internal layer,Qr <r,, will be taken as the internal
chwarzschild solutioffsolution 2a with n=2),

(75

Fig. 3. The external layen, >r, is taken as the Buchdahl solution
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FIG. 19. (a) The tangential velocity ., [Eq. (72)] and (b) the curves othdhdR [Eq. (74)] with n=2, m=0.5, andr,=2 for a
=0.5,1.0, and 1.5 as functions Bi= R/m. The disks have no unstable orbits for these parameters.
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FIG. 20. (a) The surface energy density, (b) the pressur®, and(c) the velocity of sound/, for the disk generated from spherical fluid
layers Eqs(75) and(76) with m=1;k=1, r,=2, fora=0.5, 1.0, and 1.5 as functions BE=R/m.

c \? 2
T C(1-3kr§) ———=5(1—kri)+2(1+kr})3?
m \ " C )4 (76) 5 ( 1) \/1+—krf( 1) ( 1)
g'=| — |, ée'= —_— . =
. C V1+kr? [(1+kr)2+2C\1+kr2+C2(1—kr?)]
V1+kr? (79)
Note that the external layer has no boundary, i.e., this layer 1 C
has infinite radius. Vi+kr? )
According to the continuity conditions at=r,, the con- B,=7————5—Brf. (80)
stants are related through 1+ C
V1+kr?
C
Ck + (1+kr2)32 With these relations, one verifies that, using E@) and
A= ———— A= L 5 (77 (66), Egs. (28) and (67), both the energy density and the
(C+y1+kr)?® 1+ C pressure are continuous at the radRs \r—a? of the
J1+ki? disk. |
Figures 20a)—20c) show respectivelyg, P, andV for
the disk obtained from fluid layers, EGZ5) and (76), with
Ck parametersn=1k=1, andr,=2; for a=0.5,1.0, and 1.5
B,= C 3D, (78) as functions oR=R/m. The densityp, pressurep, and ve-
(1+ krf) 1+ — locity of sound,V, for the halo along the axis with the same
V1+kry parameters foa=0.5 are shown in Fig. 21.
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FIG. 21. (a) The densityp and pressure and(b) the velocity of soundy, for the halo formed by fluid layers, Eq&5) and(76), with
m=1, k=1, andr,=2, fora=0.5 along thez axis.

In Figs. 2Za) and 22b), the curves of tangential veloci- The spacetime outside the sphere;r,, will be taken as
ties and thdh/d’wR, respective|y’ are d|sp|ayed as functions Schwarzschild’'s vacuum solution in iSOtrOpiC coordinates:
of R=R/m.

m\2
. . . ( 1- —) 4
B. NPV Solution 2b with n=+/2 and NPV solution 1b 2r N m
- =, e'=|1+— (83
with k=—2+ \/E 1 m 2r
. - + —
Now we consider a sphere composed of two finite layers: 2r

The internal layer, &r<r 4, is taken as the NPV solution 2b

with n=+2 . .
V2, In this case the pressure should be zero=at,. The conti-
2 nuity conditions atr =r, andr=r, give the relations
_ (Bl_+ len(r))_ A _ 1 _
(Alr v“2/2+ Azr—\s‘Z/Z)Z (Alrl+ \52/2+ Azrl—v2/2)2 -
(81) m_\2(2-2) o 54
2 1+y2 ' (1+2)*
The external layer ;<r<r,, is taken as the NPV solution
1b with k= —2+ 2,
1 2\2+1n(ry)
v_ V2] 2 —2+2 B3_4 yz AT Wz 84
e’=r"[Az+BsIn(r)]*, e*=Cr "=, (82 Iz rs
, , @ , , 20 : . G .
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FIG. 22. (a) The tangential velocity . and (b) the curves ohdh/dR for the disk generated from fluid layers, E@85) and(76), with
m=1, k=1, andr,=2 fora=0.5, 1.0, and 1.5 as functions B= R/m. The disks obtained with these parameters have no unstable orbits.
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FIG. 23. (a) The surface energy density, (b) the pressur®, and(c) the velocity of soundy, for the disk generated from spherical fluid
layers, Eqs(81) and(82), with r;=1 andr,=2 for a=0.3, 0.6 and 0.9 as function &= R/m.
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FIG. 24. (a) The densityp and pressure, and(b) the velocity of soundY for the halo formed by fluid layers, Eq81) and(82), with
r,=1 andr,=2 for a=0.3 along thez axis.
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FIG. 25. (a) The tangential velocity . and (b) the curves ohdh/dR for the disk generated from spherical fluid layers, E&4) and

(82), with ry=1 andr,=2, for a=0.3, 0.6, and 0.9 as functions &=R/m. Regions of unstable circular orbits appear for the disks
obtained with parameteis=0.3 and 0.6.

1
Aj=0,A,=—

N

V2

Bo=———1{[Ag+Baln(r)1(1—r 2)+2y2Bg},

=5 e
(85
ry? -
Bl=2\/—2_c{[A3+ BaIn(ry)1[2v2r; 2—In(ry)
+In(rry 21— 2y2BsIn(ry)}. (86)

Using Egs.(43) and (66), the energy density of the disk at ! Splal ] Tec . :
R= \/Fi—_az is continuous, but not the pressure. The differ-Of Einsteins field equations in isotropic coordinates can gen-

ence between Eq$68) and(45) is

The pressure is continuoustif?>—r ?2=0—r,=1.
Figures 28a)—23c) show, respectivelyg, P, andV for
the disk obtained from fluid layef81) and(82) with param-
etersr;=1 andr,=2 fora=0.3,0.6, and 0.9 as functions of
R=R/m. The densityp, pressure, and velocity of sound,
V, for the halo along the axis with the same parameters for
a=0.3 are shown in Figs. 24. In Figs. @b and 2%b), the
curves of tangential velocities and btil/dR, respectively,

are displayed as functions &=R/m. In this case, regions
of unstable orbits exist for parameteas- 0.3 anda=0.6.

VI. DISCUSSION
The displace, cut, and reflect method applied to solutions
erate disks with positive energy density and equal radial and

azimuthal pressuregerfect fluid. With solutions of static
spheres of a perfect fluid it is possible to construct disks of

212_ 212
— "= {\/E[A +BaIn(r,)]+4B3) the perfect fluid surrounded also by a perfect fluid matter. As
167\/Cry[Ag+BgIn(ry)] S 3 far we know these are the first disk models of this kind in the
(87) literature.
TABLE |. Disks properties.
Metric Matching Energy Sound Angular

Solution coefficients conditions density Pressure velocity momentum
External Schwarzschild 9 (10 (11 (13 (23)
Buchdahl (24 (27) (28 (29 (31
NPV 1a (32), (33 (40), (42) (43 (44) (46) (50)
NPV 1b (32), (39 (40), (42 (43 (45) (47) (51
NPV 2a (52), (53 (60)—(63) (66) (67) (69) (73
NPV 2b (52), (54 (60), (61), (64), (65) (66) (68) (70) (74
Internal Schwarzschild
+Buchdahl (75), (76) (77)—(80) (66), (27) (67), (28 (69), (29 (73), (31)
NPV 2b+NPV 1b (81), (82), (84)—(86) (66), (43), (68), (45), (70), (47), (74), (52),
+external Schwarzschild (83 (10 (11 (13 (23
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All disks constructed as examples have some commowill have the characteristics of normal fluid matter.
features: surface energy density and pressures decreaseWe believe that the presented disks can be used to de-
monotonically and rapidly with radius. As the “cut” param- scribe a more realistic model of galaxies than most of the
eter a decreases, the disks become more relativistic, wittalready studied disks since the counterrotation hypothesis is
surface energy density and pressure more concentrated nefjt needed to have a stable configuration.
the center. Also regions of unstable circular orbits are more \we want to finish our discussion by presenting a table that
likely to appear for highly relativistic disks. Parameters cang,mmarizes our results about disks in a unified manner.

be chosen so that the sound velocity in the fluid and the |, Taple | we list the seed metric coefficients, matching

tangential velocity of test particles in circular motion are lessqqgitions at the boundaries, and relevant physical quantities
than the velocity of light. This tangential velocity first in-

of all disks studied in this work. The numbers refer to the

creases with radius and reaches a maximum. Then, for larg&,ations presented along the paper and NPV stands for Nar-
radii, it decreases as IR, in case of disks generated from |jixar, patwardhan, and Vaidya as before.

Schwarzschild and Buchdahl’s solutions. The sound velocity
is also a decreasing function of radius, except in solution
NPV 2a with 2<n<2, where it reaches its maximum
value at the boundary. In principle, other solutions of static
spheres of perfect fluid could be used to generate other disk We want to thank FAPESP, CAPES, and CNPQ for finan-
+ halo configurations, but it is not guaranteed that the diskgial support.
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