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Exact general relativistic perfect fluid disks with halos
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Using the well-known ‘‘displace, cut, and reflect’’ method used to generate disks from given solutions of
Einstein’s field equations, we construct static disks made of a perfect fluid based on vacuum Schwarzschild’s
solution in isotropic coordinates. The same method is applied to different exact solutions to Einstein’s equa-
tions that represent static spheres of perfect fluids. We construct several models of disks with axially symmetric
perfect fluid halos. All disks have some common features: surface energy density and pressure decrease
monotonically and rapidly with the radius. As the ‘‘cut’’ parametera decreases, the disks become more
relativistic, with the surface energy density and pressure more concentrated near the center. Also, regions of
unstable circular orbits are more likely to appear for high relativistic disks. Parameters can be chosen so that
the sound velocity in the fluid and the tangential velocity of test particles in circular motion are less than the
velocity of light. This tangential velocity first increases with radius and reaches a maximum.
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I. INTRODUCTION

Axially symmetric solutions of Einstein’s field equation
corresponding to disklike configurations of matter are
great astrophysical interest, since they can be used as m
of galaxies or accretion disks. These solutions can be s
or stationary and with or without radial pressure. Solutio
for static disks without radial pressure were first studied
Bonnor and Sackfield@1#, and Morgan and Morgan@2#, and
with radial pressure by Morgan and Morgan@3#. Disks with
radial tension have been considered in@4#, and models of
disks with electric fields@5#, magnetic fields@6#, and both
magnetic and electric fields have been introduced rece
@7#. Solutions for self-similar static disks were analyzed
Lynden-Bell and Pineault@8# and Lemos@9#. The superposi-
tion of static disks with black holes were considered by L
mos and Letelier@10–12# and Klein @13#. Also Bic̆ák,
Lynden-Bell, and Katz@14# studied static disks as sources
known vacuum spacetimes and Bic˘ák, Lynden-Bell, and Pi-
chon @15# found an infinite number of new static solution
For a recent survey on relativistic gravitating disks, see@16#.

The principal method to generate the above mentio
solution is the ‘‘displace, cut and reflect’’ method. One of t
main problems with the solutions generated by using
simple method is that usually the matter content of the dis
anisotropic; i.e., the radial pressure is different from the a
muthal pressure. In most of the solutions the radial press
is null. This made these solutions rather unphysical. E
though, one can argue that when no radial pressure is pre
stability can be achieved if we have two circular streams
particles moving in opposite directions~the counterrotating
hypothesis, see for instance@14#!.

In this article we apply the displace, cut, and refle
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method to spherically symmetric solutions of Einstein’s fie
equations in isotropic coordinates to generate static d
made of aperfect fluid, i.e., with radial pressure equal t
tangential pressure and also disks of perfect fluid surroun
by a halo made of perfect fluid matter.

The article is organized as follows. Section II gives
overview of the displace, cut, and reflect method. Also
present the basic equations used to calculate the main p
cal variables of the disks. In Sec. III we apply the formalis
to obtain the simplest model of the disk, which is based
Schwarzschild’s vacuum solution in isotropic coordina
The generated class of disks is made of a perfect fluid w
well behaved density and pressure. Section IV presents s
models of disks with halos obtained from different know
exact solutions of Einstein’s field equations for static sphe
of perfect fluid in isotropic coordinates. In Sec. V we giv
some examples of disks with halo generated from sphe
composed of fluid layers. Section VI is devoted to discuss
of the results.

II. EINSTEIN EQUATIONS AND DISKS

For a static, spherically symmetric spacetime the gen
line element in isotropic spherical coordinates can be cas

ds25en(r )dt22el(r )@dr21r 2~du21sin2udw2!#. ~1!

In cylindrical coordinates (t,R,z,w) the line element~1!
takes the form

ds25en(R,z)dt22el(R,z)~dR21dz21R2dw2!. ~2!

The metric of the disk will be constructed using the w
known displace, cut, and reflect method that was used
Kuzmin @17# in Newtonian gravity and later in general rela
tivity by many authors@4–16#. The material content of the
disk will be described by functions that are distributions w
support on the disk. The method can be divided in the f
lowing steps that are illustrated in Fig. 1. First, in a spa
©2003 The American Physical Society10-1
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wherein we have a compact source of gravitational field,
choose a surface~in our case, the planez50) that divides
the space in two pieces: one with no singularities or sour
and the other with the sources. Then we disregard the pa
the space with singularities and use the surface to mak
inversion of the nonsingular part of the space. This result
a space with a singularity that is a delta function with supp
on z50. This procedure is mathematically equivalent
make the transformationz→uzu1a, with a as constant. In
the Einstein tensor we have first and second derivativesz.
Since]zuzu52q(z)21 and]zzuzu52d(z), whereq(z) and
d(z) are, respectively, the Heaviside function and the Di
distribution. Therefore the Einstein field equations will sep
rate in two different pieces@18#: one valid forzÞ0 ~usual
Einstein’s equations! and the other involving distribution
with an associated energy-momentum tensorTab5Qabd(z)
with support onz50. For metric~2!, the nonzero compo
nents ofQab are

Qt
t5

1

16p
@2bzz1gzz~bR

R1bz
z1bw

w!#, ~3!

QR
R5Qw

w5
1

16p
@2bzz1gzz~bt

t1bR
R1bz

z!#, ~4!

where bab denotes the jump of the first derivatives of th
metric tensor on the planez50,

bab5gab,zuz5012gab,zuz502, ~5!

and the other quantities are evaluated atz501. The ‘‘true’’
surface energy-momentum tensor of the disk can be wri
as Sab5A2gzzQab , thus the surface energy densitys and
the radial and azimuthal pressures or tensions~P! read

s5A2gzzQt
t , P52A2gzzQR

R52A2gzzQw
w . ~6!

Note that when the same procedure is applied to an ax
symmetric spacetime in Weyl coordinates we haveQR

R50,
i.e., we have no radial pressure or tension.

This procedure in principle can be applied to any spa
time solution of the Einstein equations with or witho
source~stress tensor!. The application to a static sphere
perfect fluid is schematized in Fig. 2. The sphere is displa
and cut by a distancea less than its radiusr b . The part of the

(a)

(b)

FIG. 1. An illustration of the displace, cut, and reflect meth
for the generation of disks. In~a! the spacetime with a singularity i
displaced and cut by a plane~dotted line!; in ~b! the part with
singularities is disregarded and the upper part is reflected on
plane.
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space that contains the center of the sphere is disregar
After the inversion of the remaining space, we end up wit
disk surrounded by a cap of perfect fluid. The properties
the inner part of the disk will depend on the internal flu
solution, but if the internal spherical fluid solution is joine
to the standard external Schwarzschild solution, the phys
properties of the outer part of the disk will be those orig
nated from Schwarzschild’s vacuum solution.

In isotropic coordinates the matching at the boundary
the fluid sphere leads to four continuity conditions: met
functionsel anden together with their first derivatives with
respect to the radial coordinate should be continuous ac
the boundary. In addition, to have a compact body the p
sure at the surface of the material sphere has to drop to z
Also to have a meaningful solution the velocity of soun
V25dp/dr, should be restricted to the interval 0<V,1.

The Einstein equations for a static, spherically symme
spacetime in isotropic coordinates for a perfect fluid sou
give us that densityr and pressurep are related to the metric
functions by

r52
e2l

8p Fl91
1

4
~l8!21

2l8

r G , ~7!

p5
e2l

8p F1

4
~l8!21

1

2
l8n81

1

r
~l81n8!G , ~8!

where primes indicate differentiation with respect tor.
Also static spheres composed of various layers of fl

can be used to generate disks with halos of fluid layers~see
Fig. 3!. The disk will then be composed of different axi
symmetric ‘‘pieces’’ glued together. The matching conditio
at the boundary of adjacent spherical fluid layers in isotro
coordinates involves four continuity conditions: the two m
ric functionsel anden, the first derivative ofl with respect
to the radial coordinate, and the pressure should be cont
ous across the boundary. At the most external boundary,
metric functionsel and en and their first derivatives with
respect to the radial coordinate should be continuous ac
the boundary; also the pressure there should go to zero.

he

(b)(a)

FIG. 2. An illustration of the displace, cut, and reflect meth
for the generation of disks with halos. In A the sphere of perf
fluid is displaced and cut by a plane~dotted line!; in ~b! the lower
part is disregarded and the upper part is reflected on the plane
0-2
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III. THE SIMPLEST DISK

We first apply the displace, cut, and reflect method
generate disks discussed in the previous section and dep
in Fig. 1 to the Schwarzschild metric in isotropic coordina
(t,r ,u,w),

ds25

S 12
m

2r D
2

S 11
m

2r D
2 dt22S 11

m

2r D
4

3@dr21r 2~du21sin2udw2!#. ~9!

Expressing solution~9! in cylindrical coordinates, and usin
Eqs.~3!–~6!, we obtain a disk with surface energy densitys
and radial and azimuthal pressures~or tensions! P given by

s5
4ma

p~m12AR21a2!3
, ~10!

P52
2m2a

p~m12AR21a2!3~m22AR21a2!
. ~11!

The total mass of the disk can be calculated with the help
Eq. ~10!:

M5E
0

`E
0

2p

sAgRRgwwdRdw5
m

4a
~m14a!. ~12!

Equation~10! shows that the disk’s surface energy dens
is always positive~weak energy condition!. Positive values
~pressure! for the stresses in azimuthal and radial directio
are obtained ifm,2AR21a2. The strong energy condition
s1Pww1PRR5s12P.0 is then satisfied. These prope
ties characterize a fluid made of matter with the usual gra
tational attractive property. This is not a trivial property
these disks since it is known that the displace, cut, and re
method sometimes gives disks made of exotic matter suc
cosmic strings, see for instance@19#.

Another useful parameter is the velocity of sound pro
gation,V, defined asV25dP/ds, which can be calculated
using Eqs.~10! and ~11!:

(b)(a)

FIG. 3. An illustration of the displace, cut, and reflect meth
for the generation of disks with various layers of halos. In~a! the
sphere with different layers of fluid is displaced and cut with
plane~dotted line!; in ~b! the field is reflected on the plane.
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V25
m~4AR21a22m!

3~m22AR21a2!2
. ~13!

The conditionV2,1 ~no tachyonic matter! imposes the in-
equalitiesm,AR21a2 or m.3AR21a2. If the pressure
condition and the speed of sound less than the speed of
condition are to be simultaneously satisfied, thenm
,AR21a2. This inequality will be valid in all the disk if
m,a.

With the presence of radial pressure one does not need
assumption of streams of rotating and counterrotating ma
usually used to explain the stability of static disk mode
However, a tangential velocity~rotation profile! can be cal-
culated by assuming that a test particle moves in a circ
geodesic on the disk. We tacitly assume that this particle o
interacts gravitationally with the fluid. This assumption
valid for the case of a particle moving in a very diluted g
such as the gas made of stars that models a galaxy disk

The geodesic equation for theR coordinate obtained from
metric ~2! is

elR̈1 1
2 ~en! ,Rṫ22 1

2 ~el! ,R~Ṙ21 ż2!2 1
2 ~elR2! ,Rẇ250.

~14!

For circular motion on thez50 plane,Ṙ5R̈50 andż50,
then Eq.~14! reduces to

ẇ2

ṫ2
5

~en! ,R

~elR2! ,R

. ~15!

The tangential velocity measured by an observer at infinit
then

vc
252

gww

gtt
S dw

dt D
2

5R2
el~en! ,R

en~R2el! ,R

. ~16!

From the metric on the disk,

en5

S 12
m

2AR21a2D 2

S 11
m

2AR21a2D 2 and el5S 11
m

2AR21a2D 4

,

~17!

we find that Eq.~16! can be cast as

vc
25

mR2

S 12
m

2AR21a2D F ~R21a2!3/21
m

2
~a22R2!G .

~18!

For R@a, Eq. ~18! goes asvc5(m/R)1/2, the Newtonian
circular velocity.

To determine the stability of circular orbits on the disk
plane, we use an extension of Rayleigh@20,21# criteria of
stability of a fluid at rest in a gravitational field,
0-3
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FIG. 4. ~a! The surface energy densitys, ~b! pressuresP, ~c! sound velocityV, and~d! tangential velocityvc ~rotation curve or rotation

profile! with m50.5 anda50.6,0.8,1.0, and 1.2 as functions ofR̃5R/m. We use geometric unitsG5c51.
on

2

n-
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m
atic
h
dh

dR
.0, ~19!

whereh is the specific angular momentum of a particle
the disk’s plane:

h52gww

dw

ds
52gww

dw

dt

dt

ds
. ~20!

Using Eq.~15! and the relation

15enS dt

dsD
2

2R2elS dw

dsD 2

, ~21!

one obtains the following expression forh:

h5R2elA ~en! ,R

en~R2el! ,R2R2el~en! ,R

. ~22!

For functions~17!, Eq. ~22! reads
08401
h5

2AmR2S 11
m

2AR21a2
D ~R21a2!1/4

A4~R21a2!228mR2AR21a21m2~R22a2!

.

~23!

The stability criterion is always satisfied fora/m*1.016.
In Figs. 4~a!–4~d! we show, respectively, the surface e

ergy density, pressures, the sound velocity, and curves o
tangential velocity~rotation curves! @Eq. ~18!# with m50.5
anda50.6,0.8,1.0, and 1.2 as functions ofR̃5R/m. Figures
5~a!–5~c! display, respectively, the surface energy dens
pressures, and sound velocity with parametersa51.0 and
m50.2,0.4,0.6, and 0.8 as as functions ofR̃5R/m. We see
that the first three quantities decrease monotonically with
radius of the disk, as can be checked from Eqs.~10!, ~11!,
and ~13!. Energy density decreases rapidly enough in pr
ciple, to, define a cut off radius and consider the disk
finite.

IV. DISKS WITH HALOS

Now we study some disks with halos constructed fro
several exact solutions of the Einstein equations for st
0-4



s

EXACT GENERAL RELATIVISTIC PERFECT FLUID . . . PHYSICAL REVIEW D68, 084010 ~2003!
0

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0 1 2 3 4 5

R = R / a
~

(a)

σ

m = 0.2
m = 0.4
m = 0.6
m = 0.8

0

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0 1 2 3 4 5

R = R / a
~

(b)

P

m = 0.2
m = 0.4
m = 0.6
m = 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5

R = R / a
~

(c)

V

m = 0.2
m = 0.4
m = 0.6
m = 0.8

FIG. 5. ~a! The surface energy densitys, ~b! pressuresP, and~c! sound velocityV with a51.0 andm50.2,0.4,0.6, and 0.8 as function
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spheres of perfect fluid. A survey of these classes of solut
is presented in@22#.

A. Buchdahl’s solution

The first situation that we shall study is similar to the o
depicted in Fig. 2 wherein we start with a sphere of perf
fluid. This case will not be exactly the same as the one p
sented in the mentioned figure because the sphere ha
boundary. Hence the generated disk will be completely
mersed in the fluid. An example of exact solution of t
Einstein equations that represent a fluid sphere with
boundary is the the Buchdahl solution that may be regar
as a reasonably close analog to the classical Lane-Em
index 5 polytrope@23#. The metric functions for this solution
are:

en5S 12
A

A11kr2

11
A

A11kr2

D 2

, el5S 11
A

A11kr2D 4

, ~24!

whereA andk are constants. Far from the origin the soluti
08401
ns

t
e-
no
-

o
d
en

goes over into the external Schwarzschild metric whenm
52A/Ak. The density, pressure, and sound velocity a
given by

r5
3Ak

2p~A1A11kr2!5
,

p5
kA2

2p~2A1A11kr2!~A1A11kr2!5
, ~25!

V25
2A~22A13A11kr2!

15~A2A11kr2!2
. ~26!

The condition V,1 is satisfied for A,@(182A39)/
19#A11kr2.

Using Eq. ~24! and Eqs.~3!–~6!, we get the following
expressions for the energy density, pressure, and sound
locity of the disk:

s5
akA

p@A1A11k~R21a2!#3
, ~27!
0-5



D. VOGT AND P. S. LETELIER PHYSICAL REVIEW D68, 084010 ~2003!
0

0.005

0.010

0.015

0.020

0.025

0 2 4 6 8 10

R = R / m
~

(a)

σ

a=1
a=2
a=3

0

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0 2 4 6 8 10

R = R / m
~

(b)

P

a=1
a=2
a=3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10

R = R / m
~

(c)

V

a=1
a=2
a=3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10

R = R / m
~

(d)

vc

a = 1.0
a = 2.0
a = 3.0

FIG. 6. ~a! The surface energy densitys, Eq. ~27!, ~b! the pressureP, Eq. ~28!, ~c! the velocity of soundV, Eq. ~29!, and ~d! the

tangential velocityvc , Eq. ~30!, for the disk withA50.6 andk51 for a51, 2, and 3 as functions ofR̃5R/m.
is
P5
akA2

2p@2A1A11k~R21a2!#@A1A11k~R21a2!#3
,

~28!

V25
A@2A12A11k~R21a2!#

3@A2A11k~R21a2!#2
. ~29!

The conditions V,1 and P.0 are both satisfied if
08401
A, 1
2 A11ka2. Figures 6~a!–6~d! show, respectively,s, P,

V, and rotation curves, Eq.~30!, as functions ofR̃5R/m for
the disk calculated from Buchdahl’s solution.

In Figs. 7~a! and 7~b! we show, respectively, the densityr
together with pressurep, and sound velocityV of the halo
along the axisz for A50.6;k51 anda51. Note that in this
solution there is no boundary of the fluid sphere: the disk
completely immersed in the fluid.

The tangential velocityvc calculated from metric coeffi-
cients~24! is
vc
25

2AkR2

~12A/A11k~R21a2!!$@11k~R21a2!#3/21A@11k~a22R2!#%
. ~30!

For R@a, Eq. ~30! goes asvc5(2A)1/2/(R1/2k1/4). The specific angular momentum follows from Eqs.~22! and ~24!:

h5

A2AkR2S 11
A

A11k~R21a2!
D 2

@11k~R21a2!#1/4

A@11k~R21a2!#224AkR2A11k~R21a2!2A2@11k~a22R2!#

. ~31!
0-6
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B. Narlikar-Patwardhan-Vaidya solutions 1a and 1b

Now we shall study the generation of a disk solution w
a halo exactly as the one depicted in Fig. 2. We start wit
solution of the Einstein equations in isotropic coordina
which represents a sphere with radiusr b of a perfect fluid
that on r 5r b will be continuously matched to the vacuu
Schwarzschild solution. Narlikar, Patwardhan, and Vaid
~NPV! @24# gave the following two exact solutions of th
Einstein equations for perfect fluid static spheres charac
ized by the metric functions (l,n1a) and (l,n1b),

el5Crk, ~32!

en1a5~A1ar
12n1k/21B1ar

11n1k/2!2 for 221A2,k<0,

~33!

en1b5r A2@A1b1B1bln~r !#2 for k5221A2, ~34!

where A1a,A1b,B1a,B1b, and C are constants andn
5A112k1k2/2. We shall refer to these solutions as NP
1a and NPV 1b, respectively.

The density, pressure, and sound velocity for the soluti
(l,n1a) and (l,n1b) will be denoted by (r,p1a,V1a) and
(r,p1b,V1b), respectively. We find

r5
2k~k14!r 222k

32pC
, ~35!

p1a5
1

32pCr21k~A1a1B1ar
2n!

$A1a@3k218~12n!

24k~n23!#1B1a@3k218~11n!

14k~n13!#r 2n%, ~36!

p1b5
A1b1B1bln~r !12A2B1b

16pC@A1b1B1bln~r !#
, ~37!
08401
a
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a

r-

s

V1a
2 5

1

k~k14!~A1a1B1ar
2n!2

$A1a
2 @23k218~n21!

14k~n23!#2B1a
2 r 4n@3k218~11n!14k~n13!#

22A1aB1ar
2n@3k~k14!18~12n2!#%, ~38!

V1b
2 5

2B1b
2 r A2

@A1b1B1bln~r !#2
. ~39!

The condition of continuity of the metric functions (l,n)
given by Eqs.~32!–~34! and the corresponding functions i
Eq. ~9! at the boundaryr 5r b leads to the following expres
sions:

m

2r b
52

k

k14
, C5r b

2kS 4

k14D 4

, ~40!

A1a52
3k218~11n!14k~n13!

16nrb
12n1k/2

,

B1a5
3k218~12n!24k~n23!

16nrb
11n1k/2

, ~41!

A1b52
2A21 ln~r b!

4r b
1/A2

, B1b5
1

4r b
1/A2

. ~42!

V1a has its maximum atr 50 andV1b at r 5r b . Condition
V1b(r b),1 is satisfied ifr b,41/A2.

Using Eqs.~32!–~34! in Eqs.~3!–~6!, we get the follow-
ing expressions for the energy density, pressure and so
velocity of the disk:

s52
ka

4pACR 11k/4
, ~43!
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FIG. 8. ~a! The surface energy densitys @Eq. ~43!#, ~b! the pressureP @Eq. ~44!#, and~c! the velocity of sound,V @Eq. ~46!# for the disk

with k521/2 andr b52 for a50.5,1.0, and 1.5 as functions ofR̃5R/m.
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whereR5R21a2. V1a andV1b have their maximum values
at R50. Because the expressions are rather involved,
restrictions on the constants, to ensure that the velocities
positive and less than one, are best made graphically.
curves ofs, P, andV as functions ofR̃5R/m with param-
etersk521/2;r b52 for a50.5,1.0 and 1.5 are displayed i
Figs. 8~a!–8~c!, respectively. Figures 9~a!–9~b! show the
densityr, pressurep, and velocity of sound,V for the halo
with parametersk521/2;r b52, for a50.5 along the axisz.
The same physical quantities are shown in Figs. 10~a!–10~c!
and 11~a! and 11~b! with k5221A2. We note thats andP
are continuous at the boundary between the internal and
ternal parts of the disk, but the velocity of sound has a d
continuity.

The tangential velocityvc is given by

vc1a
2 52R2

A1a~12n1k/2!1B1a~11n1k/2!~R21a2!n

@A1a1B1a~R21a2!n#@R2~k12!12a2#
,

~48!

vc1b
2 5R2

2A2A1b1B1b@41A2ln~R21a2!#

@2A1b1B1bln~R21a2!#@2a21A2R2#
, ~49!
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FIG. 9. ~a! The densityr @Eq. ~35!# and pressurep @Eq. ~36!#, and~b! the velocity of sound,V @Eq. ~38!# for the halo withk521/2 and
r b52 for a50.5 along thez axis.
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FIG. 10. ~a! The surface energy densitys @Eq. ~43!#, ~b! the pressureP @Eq. ~45!#, and~c! the velocity of soundV @Eq. ~47!# for the disk

with k5221A2 andr b52 for a50.5,1.0, and 1.5 as functions ofR̃5R/m.
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FIG. 11. ~a! The densityr @Eq. ~35!# and pressurep @Eq. ~37!# and ~b! the velocity of soundV @Eq. ~39!# for the halo withk522
1A2 andr b52 for a50.5 along thez axis.
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and the specific angular momentumh,

h1a5ACR2~R21a2!k/4

3AA1a~12n1k/2!1B1a~11n1k/2!~R21a2!n

A1a~a21nR2!1B1a~a22nR2!~R21a2!n
,

~50!

h1b5ACR2~R21a2!21/21A2/4

3A 2B1b1A2@A1b1B1bln~AR21a2!#

2a2@A1b1B1bln~AR21a2!#22B1bR
2
.

~51!

In Figs. 12~a! and 12~b!, the curves of tangential velocit
@Eq. ~48!# and h(dh/dR̃) @Eq. ~50!#, respectively, are dis
played as functions ofR̃5R/m with k521/2 andr b52;a
50.5,1.0, and 1.5. The same quantities are shown in F
08401
s.

13~a! and 13~b! with k5221A2. Fora50.5 the disks have
a small region of unstable orbits immediately after t
‘‘boundary radius.’’

C. Narlikar-Patwardhan-Vaidya solutions 2a and 2b

As in the previous sections we study the generation o
disk solution with a halo exactly as the one depicted in F
2. We also start with a solution of the Einstein equations
isotropic coordinates, which represents a sphere of radiur b
of a perfect fluid that onr 5r b will be continuously matched
to the vacuum Schwarzschild solution. We will use two oth
solutions found by Narlikar, Patwardhan, and Vaidya@24#
that we shall refer as NPV 2a and NPV 2b, respective
which are characterized by the metric functions (l,n2a) and
(l,n2b),

el5
1

~A1r 11n/21A2r 12n/2!2
, ~52!
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FIG. 12. ~a! The tangential velocityvc1 @Eq. ~48!# and ~b! the curves ofh(dh/dR̃) @Eq. ~50!# with k521/2 and r b52 for a

50.5,1.0, and 1.5 as functions ofR̃5R/m. A region of instability appears on the disk generated with parametera50.5.
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FIG. 13. ~a! The tangential velocityvc2 @Eq. ~49!# and ~b! the curves ofh(dh/dR̃) @Eq. ~51!# with k5221A2 and r b52 for a

50.5, 1.0, and 1.5 as functions ofR̃5R/m. As in the previous case, the same region of instability occurs.
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’s
,
or
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n
-

en2a5
~B1ar 1B2ar !

~A1r 11n/21A2r 12n/2!2

for A2,n<2, ~53!

en2b5
@B1b1B2bln~r !#2

~A1r 1/A21A2r 21/A2!2
for n5A2, ~54!

where theA’s and B’s are constants andx5A2n224. The
solution (l,n2a) with n52 corresponds to Schwarzschild
internal solution in isotropic coordinates~see, for instance
Ref. @22#!. This solution has constant density and is conf
mally flat whenB1a50.

The density, pressure, and sound velocity for the soluti
(l,n2a) and (l,n2b) will be denoted by (r,p2a,V2a) and
(r,p2b,V2b), respectively. We find

r5
1

32p
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The condition of continuity of the metric functions (l,n)
given by Eqs.~52!–~54! and the corresponding functions i
Eq. ~9! at the boundaryr 5r b leads to the following expres
sions:
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V2a has its maximum atr 5r b , andV2b at r 50.
Using Eqs.~52!–~54! in Eqs.~3!–~6!, we get the expres

sions for the energy density, pressure, and sound velocit
the disk:
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whereR5R21a2. The curves ofs, P, andV as functions of
R̃5R/m with parametersn51.8,m50.5, andr b52 for a
50.5,1.0, and 1.5 are displayed in Figs. 14~a!–14~c!, respec-
tively. Figures 15~a!–15~b! show the densityr, pressurep,
and velocity of sound,V for the halo with parametersn
51.8, m50.5, r b52, for a50.5 along thez axis. The same
physical quantities are shown in Figs. 16 and 17 withn
5A2.

The tangential velocityvc is given by
vc2a
2 5R2
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and the specific angular momentumh
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FIG. 14. ~a! The surface energy densitys @Eq. ~66!#, ~b! the pressureP @Eq. ~67!#, and~c! the velocity of sound,V @Eq. ~69!#, for the disk

with n51.8;m50.5, andr b52 for a50.5,1.0 and 1.5 as functions ofR̃5R/m.
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FIG. 15. ~a! The densityr @Eq. ~55!# and pressurep @Eq. ~56!#, and ~b! the velocity of sound,V @Eq. ~58!# for the halo withn
51.8.m50.5, andr b52 for a50.5 along thez axis.
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FIG. 16. ~a! The surface energy densitys @Eq. ~66!#, ~b! the pressureP @Eq. ~68!#, and~c! the velocity of sound,V @Eq. ~70!#, for the disk

with n5A2,r b52, andm50.5 for a50.5,1.0, and 1.5 as functions ofR̃5R/m.
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FIG. 17. ~a! The densityr @Eq. ~55!# and pressurep @Eq. ~57!#, and~b! the velocity of sound,V @Eq. ~59!# for the halo withn5A2 and
r b52 for a50.5 along thez axis.
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FIG. 18. ~a! The tangential velocityvca @Eq. ~71!#, and ~b! the curves ofhdh/dR̃ @Eq. ~73!# with n51.8,m50.5 andr b52 for a

50.5, 1.0, and 1.5 as functions ofR̃5R/m. The disks have no unstable orbits for these parameters.
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In Figs. 18~a! and 18~b!, the curves of tangential velocities
Eq. ~71!, andhdh/dR̃, Eq. ~73!, respectively, are displaye
as functions ofR̃5R/m with n51.8, m50.5, andr b52 for
a50.5, 1.0, 1.5. Figure 19 shows the same quantities w
n5A2. Unlike solution 2, no unstable circular orbits a
present for the disks constructed with these parameters.

V. DISKS WITH COMPOSITE HALOS
FROM SPHERICAL SOLUTIONS

We study two examples of disks with halos construc
from spheres of fluids with two layers as the ones depicte
Fig. 3.
08401
h

d
in

A. Internal Schwarzschild solution and Buchdahl solution

Let us consider that a fluid sphere is formed by two la
ers: The internal layer, 0<r ,r 1, will be taken as the interna
Schwarzschild solution~solution 2a with n52),

en5
~B1r 21B2!2

~A1r 21A2!2
, el5

1

~A1r 21A2!2
. ~75!

The external layer,r .r 1 is taken as the Buchdahl solution
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FIG. 19. ~a! The tangential velocityvcb @Eq. ~72!# and ~b! the curves ofhdh/dR̃ @Eq. ~74!# with n5A2, m50.5, andr b52 for a

50.5,1.0, and 1.5 as functions ofR̃5R/m. The disks have no unstable orbits for these parameters.
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FIG. 20. ~a! The surface energy densitys, ~b! the pressureP, and~c! the velocity of soundV, for the disk generated from spherical flui

layers Eqs.~75! and ~76! with m51;k51, r 152, for a50.5, 1.0, and 1.5 as functions ofR̃5R/m.
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Note that the external layer has no boundary, i.e., this la
has infinite radius.

According to the continuity conditions atr 5r 1, the con-
stants are related through

A15
Ck

~C1A11kr1
2!3

, A25

11
C

~11kr1
2!3/2

S 11
C

A11kr1
2D 3 , ~77!

B15
Ck

~11kr1
2!S 11

C

A11kr1
2D 3 D, ~78!
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@~11kr1
2!212CA11kr1
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B25

12
C

A11kr1
2

S 11
C

A11kr1
2D 3 2B1r 1

2 . ~80!

With these relations, one verifies that, using Eqs.~27! and
~66!, Eqs. ~28! and ~67!, both the energy density and th
pressure are continuous at the radiusR5Ar 1

22a2 of the
disk.

Figures 20~a!–20~c! show respectively,s, P, and V for
the disk obtained from fluid layers, Eq.~75! and ~76!, with
parametersm51,k51, andr 152; for a50.5,1.0, and 1.5
as functions ofR̃5R/m. The densityr, pressurep, and ve-
locity of sound,V, for the halo along thez axis with the same
parameters fora50.5 are shown in Fig. 21.
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FIG. 21. ~a! The densityr and pressurep and~b! the velocity of sound,V, for the halo formed by fluid layers, Eqs.~75! and~76!, with
m51, k51, andr 152, for a50.5 along thez axis.
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In Figs. 22~a! and 22~b!, the curves of tangential veloci

ties and ofhdh/dR̃, respectively, are displayed as functio
of R̃5R/m.

B. NPV Solution 2b with nÄA2 and NPV solution 1b
with kÄÀ2¿A2

Now we consider a sphere composed of two finite laye
The internal layer, 0<r ,r 1, is taken as the NPV solution 2
with n5A2,

en5
~B11B2ln~r !!2

~A1r A2/21A2r 2A2/2!2
, el5

1

~A1r 11A2/21A2r 12A2/2!2
.

~81!

The external layer,r 1,r ,r 2, is taken as the NPV solution
1b with k5221A2,

en5r A2@A31B3ln~r !#2, el5Cr221A2. ~82!
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The spacetime outside the sphere,r .r 2, will be taken as
Schwarzschild’s vacuum solution in isotropic coordinates

en5

S 12
m

2r D
2

S 11
m

2r D
2 , el5S 11

m

2r D
4

. ~83!

In this case the pressure should be zero atr 5r 2. The conti-
nuity conditions atr 5r 1 and r 5r 2 give the relations

m

r 2
5

A2~22A2!

11A2
, C5

64r 2
22A2

~11A2!4
,

B35
1

4r 2
1/A2

, A352
2A21 ln~r 2!

r 2
1/A2

, ~84!
rbits.
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FIG. 22. ~a! The tangential velocityvc and ~b! the curves ofhdh/dR̃ for the disk generated from fluid layers, Eqs.~75! and ~76!, with

m51, k51, andr 152 for a50.5, 1.0, and 1.5 as functions ofR̃5R/m. The disks obtained with these parameters have no unstable o
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FIG. 23. ~a! The surface energy densitys, ~b! the pressureP, and~c! the velocity of sound,V, for the disk generated from spherical flui

layers, Eqs.~81! and ~82!, with r 151 andr 252 for a50.3, 0.6 and 0.9 as function ofR̃5R/m.
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Using Eqs.~43! and ~66!, the energy density of the disk a
R5Ar 1

22a2 is continuous, but not the pressure. The diffe
ence between Eqs.~68! and ~45! is

DP5
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A2/22r 1
2A2/2!

16pACr1@A31B3ln~r 1!#
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The pressure is continuous ifr 1
A2/22r 1

2A2/250→r 151.
Figures 23~a!–23~c! show, respectively,s, P, and V for

the disk obtained from fluid layers~81! and~82! with param-
etersr 151 andr 252 for a50.3,0.6, and 0.9 as functions o
R̃5R/m. The densityr, pressurep, and velocity of sound,
V, for the halo along thez axis with the same parameters fo
a50.3 are shown in Figs. 24. In Figs. 25~a! and 25~b!, the
curves of tangential velocities and ofhdh/dR̃, respectively,
are displayed as functions ofR̃5R/m. In this case, regions
of unstable orbits exist for parametersa50.3 anda50.6.

VI. DISCUSSION

The displace, cut, and reflect method applied to soluti
of Einsteins field equations in isotropic coordinates can g
erate disks with positive energy density and equal radial
azimuthal pressures~perfect fluid!. With solutions of static
spheres of a perfect fluid it is possible to construct disks
the perfect fluid surrounded also by a perfect fluid matter.
far we know these are the first disk models of this kind in t
literature.
tum
TABLE I. Disks properties.

Metric Matching Energy Sound Angular
Solution coefficients conditions density Pressure velocity momen

External Schwarzschild ~9! ~10! ~11! ~13! ~23!

Buchdahl ~24! ~27! ~28! ~29! ~31!

NPV 1a ~32!, ~33! ~40!, ~41! ~43! ~44! ~46! ~50!

NPV 1b ~32!, ~34! ~40!, ~42! ~43! ~45! ~47! ~51!

NPV 2a ~52!, ~53! ~60!–~63! ~66! ~67! ~69! ~73!

NPV 2b ~52!, ~54! ~60!, ~61!, ~64!, ~65! ~66! ~68! ~70! ~74!

Internal Schwarzschild
1Buchdahl ~75!, ~76! ~77!–~80! ~66!, ~27! ~67!, ~28! ~69!, ~29! ~73!, ~31!

NPV 2b1NPV 1b ~81!, ~82!, ~84!–~86! ~66!, ~43!, ~68!, ~45!, ~70!, ~47!, ~74!, ~51!,
1external Schwarzschild ~83! ~10! ~11! ~13! ~23!
0-19
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All disks constructed as examples have some comm
features: surface energy density and pressures dec
monotonically and rapidly with radius. As the ‘‘cut’’ param
eter a decreases, the disks become more relativistic, w
surface energy density and pressure more concentrated
the center. Also regions of unstable circular orbits are m
likely to appear for highly relativistic disks. Parameters c
be chosen so that the sound velocity in the fluid and
tangential velocity of test particles in circular motion are le
than the velocity of light. This tangential velocity first in
creases with radius and reaches a maximum. Then, for l
radii, it decreases as 1/AR, in case of disks generated from
Schwarzschild and Buchdahl’s solutions. The sound velo
is also a decreasing function of radius, except in solut
NPV 2a with A2,n<2, where it reaches its maximum
value at the boundary. In principle, other solutions of sta
spheres of perfect fluid could be used to generate other
1 halo configurations, but it is not guaranteed that the di
v.

c.

08401
n
ase

h
ear
e

n
e
s

ge

ty
n

c
sk
s

will have the characteristics of normal fluid matter.
We believe that the presented disks can be used to

scribe a more realistic model of galaxies than most of
already studied disks since the counterrotation hypothes
not needed to have a stable configuration.

We want to finish our discussion by presenting a table t
summarizes our results about disks in a unified manner.

In Table I we list the seed metric coefficients, matchi
conditions at the boundaries, and relevant physical quant
of all disks studied in this work. The numbers refer to t
equations presented along the paper and NPV stands for
likar, Patwardhan, and Vaidya as before.
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