49 research outputs found

    Palmitate-Triggered COX2/PGE2-Related Hyperinflammation in Dual-Stressed PdL Fibroblasts Is Mediated by Repressive H3K27 Trimethylation

    Get PDF
    The interrelationships between periodontal disease, obesity-related hyperlipidemia and mechanical forces and their modulating effects on the epigenetic profile of periodontal ligament (PdL) cells are assumed to be remarkably complex. The PdL serves as a connective tissue between teeth and alveolar bone and is involved in pathogen defense and the inflammatory responses to mechanical stimuli occurring during tooth movement. Altered inflammatory signaling could promote root resorption and tooth loss. Hyperinflammatory COX2/PGE2 signaling was reported for human PdL fibroblasts (HPdLFs) concomitantly stressed with Porphyromonas gingivalis lipopolysaccharides and compressive force after exposure to palmitic acid (PA). The aim of this study was to investigate the extent to which this was modulated by global and gene-specific changes in histone modifications. The expression of key epigenetic players and global H3Kac and H3K27me3 levels were quantitatively evaluated in dual-stressed HPdLFs exposed to PA, revealing a minor force-related reduction in repressive H3K27me3. UNC1999-induced H3K27me3 inhibition reversed the hyperinflammatory responses of dual-stressed PA cultures characterized by increased COX2 expression, PGE2 secretion and THP1 adhesion. The reduced expression of the gene encoding the anti-inflammatory cytokine IL-10 and the increased presence of H3K27me3 at its promoter-associated sites were reversed by inhibitor treatment. Thus, the data highlight an important epigenetic interplay between the different stimuli to which the PdL is exposed

    A Yeast-Based Functional Assay to Study Plant N-Degron – N-Recognin Interactions

    Get PDF
    The N-degron pathway is a branch of the ubiquitin-proteasome system where amino-terminal residues serve as degradation signals. In a synthetic biology approach, we expressed ubiquitin ligase PRT6 and ubiquitin conjugating enzyme 2 (AtUBC2) from Arabidopsis thaliana in a Saccharomyces cerevisiae strain with mutation in its endogenous N-degron pathway. The two enzymes re-constitute part of the plant N-degron pathway and were probed by monitoring the stability of co-expressed GFP-linked plant proteins starting with Arginine N-degrons. The novel assay allows for straightforward analysis, whereas in vitro interaction assays often do not allow detection of the weak binding of N-degron recognizing ubiquitin ligases to their substrates, and in planta testing is usually complex and time-consuming

    Perspectives for systems biology in the management of tuberculosis

    Get PDF
    Standardised management of tuberculosis may soon be replaced by individualised, precision medicine-guided therapies informed with knowledge provided by the field of systems biology. Systems biology is a rapidly expanding field of computational and mathematical analysis and modelling of complex biological systems that can provide insights into mechanisms underlying tuberculosis, identify novel biomarkers, and help to optimise prevention, diagnosis and treatment of disease. These advances are critically important in the context of the evolving epidemic of drug-resistant tuberculosis. Here, we review the available evidence on the role of systems biology approaches - human and mycobacterial genomics and transcriptomics, proteomics, lipidomics/metabolomics, immunophenotyping, systems pharmacology and gut microbiomes - in the management of tuberculosis including prediction of risk for disease progression, severity of mycobacterial virulence and drug resistance, adverse events, comorbidities, response to therapy and treatment outcomes. Application of the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach demonstrated that at present most of the studies provide "very low" certainty of evidence for answering clinically relevant questions. Further studies in large prospective cohorts of patients, including randomised clinical trials, are necessary to assess the applicability of the findings in tuberculosis prevention and more efficient clinical management of patients.Publisher PDFPeer reviewe

    Differential proteomic analysis of abnormal intramyoplasmic aggregates in desminopathy

    Get PDF
    Desminopathy is a subtype of myofibrillar myopathy caused by desmin mutations and characterized by protein aggregates accumulating in muscle fibers. The aim of this study was to assess the protein composition of these aggregates. Aggregates and intact myofiber sections were obtained from skeletal muscle biopsies of five desminopathy patients by laser microdissection and analyzed by a label-free spectral count-based proteomic approach. We identified 397 proteins with 22 showing significantly higher spectral indices in aggregates (ratio >1.8, p <0.05). Fifteen of these proteins not previously reported as specific aggregate components provide new insights regarding pathomechanisms of desminopathy. Results of proteomic analysis were supported by immunolocalization studies and parallel reaction monitoring. Three mutant desmin variants were detected directly on the protein level as components of the aggregates, suggesting their direct involvement in aggregate-formation and demonstrating for the first time that proteomic analysis can be used for direct identification of a disease-causing mutation in myofibrillar myopathy. Comparison of the proteomic results in desminopathy with our previous analysis of aggregate composition in filaminopathy, another myofibrillar myopathy subtype, allows to determine subtype-specific proteomic profile that facilitates identification of the specific disorder. Biological significance Our proteomic analysis provides essential new insights in the composition of pathological protein aggregates in skeletal muscle fibers of desminopathy patients. The results contribute to a better understanding of pathomechanisms in myofibrillar myopathies and provide the basis for hypothesis-driven studies. The detection of specific proteomic profiles in different myofibrillar myopathy subtypes indicates that proteomic analysis may become a useful tool in differential diagnosis of protein aggregate myopathies. This article is part of a Special Issue entitled: From Genome to Proteome: Open Innovations. (C) 2013 Elsevier B.V. All rights reserved

    Gender Differences in Myogenic Regulation along the Vascular Tree of the Gerbil Cochlea

    Get PDF
    Regulation of cochlear blood flow is critical for hearing due to its exquisite sensitivity to ischemia and oxidative stress. Many forms of hearing loss such as sensorineural hearing loss and presbyacusis may involve or be aggravated by blood flow disorders. Animal experiments and clinical outcomes further suggest that there is a gender preference in hearing loss, with males being more susceptible. Autoregulation of cochlear blood flow has been demonstrated in some animal models in vivo, suggesting that similar to the brain, blood vessels supplying the cochlea have the ability to control flow within normal limits, despite variations in systemic blood pressure. Here, we investigated myogenic regulation in the cochlear blood supply of the Mongolian gerbil, a widely used animal model in hearing research. The cochlear blood supply originates at the basilar artery, followed by the anterior inferior cerebellar artery, and inside the inner ear, by the spiral modiolar artery and the radiating arterioles that supply the capillary beds of the spiral ligament and stria vascularis. Arteries from male and female gerbils were isolated and pressurized using a concentric pipette system. Diameter changes in response to increasing luminal pressures were recorded by laser scanning microscopy. Our results show that cochlear vessels from male and female gerbils exhibit myogenic regulation but with important differences. Whereas in male gerbils, both spiral modiolar arteries and radiating arterioles exhibited pressure-dependent tone, in females, only radiating arterioles had this property. Male spiral modiolar arteries responded more to L-NNA than female spiral modiolar arteries, suggesting that NO-dependent mechanisms play a bigger role in the myogenic regulation of male than female gerbil cochlear vessels

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG

    Sensitivity in the Male but Not the Female Gerbil Spiral Modiolar Artery

    Get PDF
    Cochlear blood flow regulation is important to prevent hearing loss caused by ischemia and oxidative stress. Cochlear blood supply is provided by the spiral modiolar artery (SMA). The myogenic tone of the SMA is enhanced by the nitric oxide synthase (NOS) blocker L-N(G)-Nitro-Arginine (LNNA) in males, but not in females. Here, we investigated whether this gender difference is based on differences in the cytosolic Ca(2+) concentration and/or the Ca(2+) sensitivity of the myofilaments. Vascular diameter, myogenic tone, cytosolic Ca(2+), and Ca(2+) sensitivity were evaluated in pressurized SMA segments isolated from male and female gerbils using laser-scanning microscopy and microfluorometry. The gender difference of the LNNA-induced tone was compared, in the same vessel segments, to tone induced by 150 mM K(+) and endothelin-1, neither of which showed an apparent gender-difference. Interestingly, LNNA-induced tone in male SMAs was observed in protocols that included changes in intramural pressure, but not when the intramural pressure was held constant. LNNA in male SMAs did not increase the global Ca(2+) concentration in smooth muscle cells but increased the Ca(2+) sensitivity. This increase in the Ca(2+) sensitivity was abolished in the presence of the guanylyl cyclase inhibitor ODQ or by extrinsic application of either the nitric oxide (NO)-donor DEA-NONOate or the cGMP analog 8-pCPT-cGMP. The rho-kinase blocker Y27632 decreased the basal Ca(2+) sensitivity and abolished the LNNA-induced increase in Ca(2+) sensitivity in male SMAs. Neither LNNA nor Y27632 changed the Ca(2+) sensitivity in female SMAs. The data suggest that the gender difference in LNNA-induced tone is based on a gender difference in the regulation of rho-kinase mediated Ca(2+) sensitivity. Rho-kinase and NO thus emerge as critical factors in the regulation of cochlear blood flow. The larger role of NO-dependent mechanisms in male SMAs predicts greater restrictions on cochlear blood flow under conditions of impaired endothelial cell function

    Ryanodine-induced vasoconstriction of the gerbil spiral modiolar artery depends on the Ca2+ sensitivity but not on Ca2+ sparks or BK channels

    No full text
    Citation: Krishnamoorthy, G., Reimann, K. & Wangemann, P. BMC Physiol (2016) 16: 6. https://doi.org/10.1186/s12899-016-0026-zBackground In many vascular smooth muscle cells (SMCs), ryanodine receptor-mediated Ca2+ sparks activate large-conductance Ca2+-activated K+ (BK) channels leading to lowered SMC [Ca2+]i and vasodilation. Here we investigated whether Ca2+ sparks regulate SMC global [Ca2+]i and diameter in the spiral modiolar artery (SMA) by activating BK channels. Methods SMAs were isolated from adult female gerbils, loaded with the Ca2+-sensitive flourescent dye fluo-4 and pressurized using a concentric double-pipette system. Ca2+ signals and vascular diameter changes were recorded using a laser-scanning confocal imaging system. Effects of various pharmacological agents on Ca2+ signals and vascular diameter were analyzed. Results Ca2+ sparks and waves were observed in pressurized SMAs. Inhibition of Ca2+ sparks with ryanodine increased global Ca2+ and constricted SMA at 40 cmH2O but inhibition of Ca2+ sparks with tetracaine or inhibition of BK channels with iberiotoxin at 40 cmH2O did not produce a similar effect. The ryanodine-induced vasoconstriction observed at 40 cmH2O was abolished at 60 cmH2O, consistent with a greater Ca2+-sensitivity of constriction at 40 cmH2O than at 60 cmH2O. When the Ca2+-sensitivity of the SMA was increased by prior application of 1 nM endothelin-1, ryanodine induced a robust vasoconstriction at 60 cmH2O. Conclusions The results suggest that Ca2+ sparks, while present, do not regulate vascular diameter in the SMA by activating BK channels and that the regulation of vascular diameter in the SMA is determined by the Ca2+-sensitivity of constriction
    corecore