91 research outputs found
Room temperature emission at 1.6 µm from InGaAs quantum dots capped with GaAsSb
Room temperature photoluminescence at 1.6 µm is demonstrated from InGaAs quantum dots capped with an 8 nm GaAsSb quantum well. Results obtained from various sample structures are compared, including samples capped with GaAs. The observed redshift in GaAsSb capped samples is attributed to a type II band alignment and to a beneficial modification of growth kinetics during capping due to the presence of Sb. The sample structure is discussed on the basis of transmission electron microscopy results.This work was supported by the Spanish MCyT under NANOSELF project TIC2002-04096, by CAM project GR/MAT/0726/2004, by the SANDiE Network of excellence (Contract No. NMP4-CT-2004-500101) and the Junta de Andalucía
(Group Tep-0120). J.M.R. acknowledges support
through a Ramón y Cajal grant. TEM measurements were carried out at DME-SCCYT, UCA.Peer reviewe
Impact of estrogen receptor alpha on the tamoxifen resistance in breast cancer patients
Genetic aberrations and changes in the activity of estrogen receptors alpha (ERa[lpha]) play an important role in the endocrine sensitivity. The aim of this study was to examine the relationship between the ESR1 expression level, its polymorphic variants, and the distribution pattern of ER[alpha] expression with the prognosis and efficacy of tamoxifen treatment in breast cancer patients. Our data suggest that the ESR1 expression level, SNPs in the ESR1 gene and the distribution pattern of ERα expression can be a potential molecular marker of tamoxifen resistance in breast cancer patients
Uncoupling of the endocannabinoid signalling complex in a mouse model of fragile X syndrome
Fragile X syndrome, the most commonly known genetic cause of autism, is due to loss of the fragile X mental retardation protein, which regulates signal transduction at metabotropic glutamate receptor-5 in the brain. Fragile X mental retardation protein deletion in mice enhances metabotropic glutamate receptor-5-dependent long-term depression in the hippocampus and cerebellum. Here we show that a distinct type of metabotropic glutamate receptor-5-dependent long-term depression at excitatory synapses of the ventral striatum and prefrontal cortex, which is mediated by the endocannabinoid 2-arachidonoyl-sn-glycerol, is absent in fragile X mental retardation protein-null mice. In these mutants, the macromolecular complex that links metabotropic glutamate receptor-5 to the 2-arachidonoyl-sn-glycerolproducing enzyme, diacylglycerol lipase-α (endocannabinoid signalosome), is disrupted and metabotropic glutamate receptor-5-dependent 2-arachidonoyl-sn-glycerol formation is compromised. These changes are accompanied by impaired endocannabinoid-dependent long-term depression. Pharmacological enhancement of 2-arachidonoyl-sn-glycerol signalling normalizes this synaptic defect and corrects behavioural abnormalities in fragile X mental retardation protein-deficient mice. The results identify the endocannabinoid signalosome as
Pathomechanisms of ALS8: altered autophagy and defective RNA binding protein (RBP) homeostasis due to the VAPB P56S mutation.
Mutations in RNA binding proteins (RBPs) and in genes regulating autophagy are frequent causes of familial amyotrophic lateral sclerosis (fALS). The P56S mutation in vesicle-associated membrane protein-associated protein B (VAPB) leads to fALS (ALS8) and spinal muscular atrophy (SMA). While VAPB is primarily involved in the unfolded protein response (UPR), vesicular trafficking and in initial steps of the autophagy pathway, the effect of mutant P56S-VAPB on autophagy regulation in connection with RBP homeostasis has not been explored yet. Examining the muscle biopsy of our index ALS8 patient of European origin revealed globular accumulations of VAPB aggregates co-localised with autophagy markers LC3 and p62 in partially atrophic and atrophic muscle fibres. In line with this skin fibroblasts obtained from the same patient showed accumulation of P56S-VAPB aggregates together with LC3 and p62. Detailed investigations of autophagic flux in cell culture models revealed that P56S-VAPB alters both initial and late steps of the autophagy pathway. Accordingly, electron microscopy complemented with live cell imaging highlighted the impaired fusion of accumulated autophagosomes with lysosomes in cells expressing P56S-VAPB. Consistent with these observations, neuropathological studies of brain and spinal cord of P56S-VAPB transgenic mice revealed signs of neurodegeneration associated with altered protein quality control and defective autophagy. Autophagy and RBP homeostasis are interdependent, as demonstrated by the cytoplasmic mis-localisation of several RBPs including pTDP-43, FUS, Matrin 3 which often sequestered with P56S-VAPB aggregates both in cell culture and in the muscle biopsy of the ALS8 patient. Further confirming the notion that aggregation of the RBPs proceeds through the stress granule (SG) pathway, we found persistent G3BP- and TIAR1-positive SGs in P56S-VAPB expressing cells as well as in the ALS8 patient muscle biopsy. We conclude that P56S-VAPB-ALS8 involves a cohesive pathomechanism of aberrant RBP homeostasis together with dysfunctional autophagy
Heteromeric clusters of ubiquitinated ER-shaping proteins drive ER-phagy
Membrane-shaping proteins characterized by reticulon homology domains play an important part in the dynamic remodelling of the endoplasmic reticulum (ER). An example of such a protein is FAM134B, which can bind LC3 proteins and mediate the degradation of ER sheets through selective autophagy (ER-phagy)1. Mutations in FAM134B result in a neurodegenerative disorder in humans that mainly affects sensory and autonomic neurons2. Here we report that ARL6IP1, another ER-shaping protein that contains a reticulon homology domain and is associated with sensory loss3, interacts with FAM134B and participates in the formation of heteromeric multi-protein clusters required for ER-phagy. Moreover, ubiquitination of ARL6IP1 promotes this process. Accordingly, disruption of Arl6ip1 in mice causes an expansion of ER sheets in sensory neurons that degenerate over time. Primary cells obtained from Arl6ip1-deficient mice or from patients display incomplete budding of ER membranes and severe impairment of ER-phagy flux. Therefore, we propose that the clustering of ubiquitinated ER-shaping proteins facilitates the dynamic remodelling of the ER during ER-phagy and is important for neuronal maintenance.</p
Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease
Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
Subcellular arrangement of molecules for 2-arachidonoyl-glycerol-mediated retrograde signaling and its physiological contribution to synaptic modulation in the striatum.
Endogenous cannabinoids (endocannabinoids) mediate retrograde signals for short- and long-term suppression of transmitter release at synapses of striatal medium spiny (MS) neurons. An endocannabinoid, 2-arachidonoyl-glycerol (2-AG), is synthesized from diacylglycerol (DAG) after membrane depolarization and Gq-coupled receptor activation. To understand 2-AG-mediated retrograde signaling in the striatum, we determined precise subcellular distributions of the synthetic enzyme of 2-AG, DAG lipase-alpha (DAGLalpha), and its upstream metabotropic glutamate receptor 5 (mGluR5) and muscarinic acetylcholine receptor 1 (M1). DAGLalpha, mGluR5, and M1 were all richly distributed on the somatodendritic surface of MS neurons, but their subcellular distributions were different. Although mGluR5 and DAGLalpha levels were highest in spines and accumulated in the perisynaptic region, M1 level was lowest in spines and was rather excluded from the mGluR5-rich perisynaptic region. These subcellular arrangements suggest that mGluR5 and M1 might differentially affect endocannabinoid-mediated, depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE) in MS neurons. Indeed, mGluR5 activation enhanced both DSI and DSE, whereas M1 activation enhanced DSI only. Importantly, DSI, DSE, and receptor-driven endocannabinoid-mediated suppression were all abolished by the DAG lipase inhibitor tetrahydrolipstatin, indicating 2-AG as the major endocannabinoid mediating retrograde suppression at excitatory and inhibitory synapses of MS neurons. Accordingly, CB1 cannabinoid receptor, the main target of 2-AG, was present at high levels on GABAergic axon terminals of MS neurons and parvalbumin-positive interneurons and at low levels on excitatory corticostriatal afferents. Thus, endocannabinoid signaling molecules are arranged to modulate the excitability of the MS neuron effectively depending on cortical activity and cholinergic tone as measured by mGluR5 and M1 receptors, respectively
Recommended from our members
Role of endogenous cannabinoids in synaptic signaling.
Research of cannabinoid actions was boosted in the 1990s by remarkable discoveries including identification of endogenous compounds with cannabimimetic activity (endocannabinoids) and the cloning of their molecular targets, the CB1 and CB2 receptors. Although the existence of an endogenous cannabinoid signaling system has been established for a decade, its physiological roles have just begun to unfold. In addition, the behavioral effects of exogenous cannabinoids such as delta-9-tetrahydrocannabinol, the major active compound of hashish and marijuana, await explanation at the cellular and network levels. Recent physiological, pharmacological, and high-resolution anatomical studies provided evidence that the major physiological effect of cannabinoids is the regulation of neurotransmitter release via activation of presynaptic CB1 receptors located on distinct types of axon terminals throughout the brain. Subsequent discoveries shed light on the functional consequences of this localization by demonstrating the involvement of endocannabinoids in retrograde signaling at GABAergic and glutamatergic synapses. In this review, we aim to synthesize recent progress in our understanding of the physiological roles of endocannabinoids in the brain. First, the synthetic pathways of endocannabinoids are discussed, along with the putative mechanisms of their release, uptake, and degradation. The fine-grain anatomical distribution of the neuronal cannabinoid receptor CB1 is described in most brain areas, emphasizing its general presynaptic localization and role in controlling neurotransmitter release. Finally, the possible functions of endocannabinoids as retrograde synaptic signal molecules are discussed in relation to synaptic plasticity and network activity patterns
Ultrafine microstructures developed during torsional testing of Hadfield manganese steels
Three Hadfield manganese steels were investigated containing 1·15, 1·40, and 1·70 wt-%C, all with about 13 wt-%Mn. The as processed steels consisted of austenite grains, 10–12 μm in size, with a dispersion of carbides. The steels were deformed at temperatures in the range 500–950°C in three different phase regions, namely, three phase (austenite + carbide + ferrite), two phase (austenite + carbide), and single phase (austenite). Ultrafine microstructures were developed during large strain torsional deformation. The large torsional deformation in the two phase region resulted in grain refinement through dynamic recrystallisation with the austenite grains pinned by carbide particles, minimising grain growth. Strain assisted transformation followed by spheroidisation of carbides was obtained on testing in the three phase region. The concurrent deformation and transformation resulted in ultrafine microstructures of submicrometre size constituents. Torsional properties were evaluated and related to the observed microstructural changes. Stress exponents of about 7 were obtained. The activation energy for the deformation process was found to be close to that for lattice self diffusion of iron in austenite.Peer reviewe
- …