42 research outputs found

    Prolonged hypothyroidism severely reduces ovarian follicular reserve in adult rats

    Get PDF
    Background There is substantial evidence both in humans and in animals that a prolonged reduction in plasma thyroid hormone concentration leads to reproductive problems, including disturbed folliculogenesis, impaired ovulation and fertilization rates, miscarriage and pregnancy complications. The objective of the present study is to examine the consequences of chronic hypothyroidism, induced in adulthood, for the size of the ovarian follicle pool. In order to investigate this, adult female rats were provided either a control or an iodide deficient diet in combination with perchlorate supplementation to inhibit iodide uptake by the thyroid. Sixteen weeks later animals were sacrificed. Blood was collected for hormone analyses and ovaries were evaluated histologically. Results At the time of sacrifice, plasma thyroid-stimulating hormone concentrations were 20- to 40-fold increased, thyroxine concentrations were negligible while tri-iothyronin concentrations were decreased by 40% in the hypothyroid group, confirming that the animals were hypothyroid. Primordial, primary and preantral follicle numbers were significantly lower in the hypothyroid ovaries compared to the euthyroid controls, while a downward trend in antral follicle and corpora lutea numbers was observed. Surprisingly the percentage of atretic follicles was not significantly different between the two groups, suggesting that the reduced preantral and antral follicle numbers were presumably not the consequence of increased degeneration of these follicle types in the hypothyroid group. Plasma anti-Müllerian hormone (AMH) levels showed a significant correlation with the growing follicle population represented by the total ovarian number of primary, preantral and antral follicles, suggesting that also under hypothyroid conditions AMH can serve as a surrogate marker to assess the growing ovarian follicle population. Conclusions The induction of a chronic hypothyroid condition in adult female rats negatively affects the ovarian follicular reserve and the size of the growing follicle population, which may impact fertility

    Rat testicular germ cells and sertoli cells release different types of bioactive transforming growth factor beta in vitro

    Get PDF
    Several in vivo studies have reported the presence of immunoreactive transforming growth factor-β's (TGF-β's) in testicular cells at defined stages of their differentiation. The most pronounced changes in TGF-β(1 )and TGF-β(2 )immunoreactivity occurred during spermatogenesis. In the present study we have investigated whether germ cells and Sertoli cells are able to secrete bioactive TGF-β's in vitro, using the CCl64 mink lung epithelial cell line as bioassay for the measurement of TGF-β. In cellular lysates, TGF-β bioactivity was only observed following heat-treatment, indicating that within these cells TGF-β is present in a latent form. To our surprise, active TGF-β could be detected in the culture supernatant of germ cells and Sertoli cells without prior heat-treatment. This suggests that these cells not only produce and release TGF-β in a latent form, but that they also release a factor which can convert latent TGF-β into its active form. Following heat-activation of these culture supernatant's, total TGF-β bioactivity increased 6- to 9-fold. Spermatocytes are the cell type that releases most bioactive TGF-β during a 24 h culture period, although round and elongated spermatids and Sertoli cells also secrete significant amounts of TGF-β. The biological activity of TGF-β could be inhibited by neutralizing antibodies against TGF-β(1 )(spermatocytes and round spermatids) and TGF-β(2 )(round and elongating spermatids). TGF-β activity in the Sertoli cell culture supernatant was inhibited slightly by either the TGF-β(1 )and TGF-β(2 )neutralizing antibody. These in vitro data suggest that germ cells and Sertoli cells release latent TGF-β's. Following secretion, the TGF-β's are converted to a biological active form that can interact with specific TGF-β receptors. These results strengthen the hypothesis that TGF-β's may play a physiological role in germ cell proliferation/differentiation and Sertoli cell function

    Dual Effect on Adult-Type Leydig Cell and Sertoli Cell Development

    Get PDF
    Transient neonatal 6-propyl-2-thiouracil (PTU) induced hypothyroidism affects Leydig and Sertoli cell numbers in the developing testis, resulting in increased adult testis size. The hypothyroid condition was thought to be responsible, an assumption questioned by studies showing that uninterrupted fetal/postnatal hypothyroidism did not affect adult testis size. Here, we investigated effects of transient hypothyroidism on Leydig and Sertoli cell development, employing a perinatal iodide-deficient diet in combination with sodium perchlorate. This hypothyroidism inducing diet was continued until days 1, 7, 14, or 28 postpartum (pp) respectively, when the rats were switched to a euthyroid diet and followed up to adulthood. Continuous euthyroid and hypothyroid, and neonatal PTU-treated rats switched to the euthyroid diet at 28 days pp, were included for comparison. No effects on formation of the adult-type Leydig cell population or on Sertoli cell proliferation and differentiation were observed when the diet switched at/or before day 14 pp. However, when the diet was discontinued at day 28 pp, Leydig cell development was delayed similarly to what was observed in chronic hypothyroid rats. Surprisingly, Sertoli cell proliferation was 6- to 8-fold increased 2 days after the diet switch and remained elevated the next days. In adulthood, Sertoli cell number per seminiferous tubule cross-section and consequently testis weight was increased in this group. These observations implicate that increased adult testis size in transiently hypothyroid rats is not caused by the hypothyroid condition per se, but originates from augmented Sertoli cell proliferation as a consequence of rapid normalization of thyroid hormone concentrations

    Oncostatin-M inhibits luteinizing hormone stimulated Leydig cell progenitor formation in vitro

    Get PDF
    Background: The initial steps of stem Leydig cell differentiation into steroid producing progenitor cells are thought to take place independent of luteinizing hormone (LH), under the influence of locally produced factors such as leukaemia inhibitory factor (LIF), platelet derived growth factor A and stem cell factor. For the formation of a normal sized Leydig cell population in the adult testis, the presence of LH appears to be essential. Oncostatin M (OSM) is a multifunctional cytokine and member of the interleukin (IL)-6 family that also includes other cytokines such as LIF. In the rat OSM is highly expressed in the late fetal and neonatal testis, and may thus be a candidate factor involved in Leydig cell progenitor formation. Methods: Interstitial cells were isolated from 13-day-old rat testes and cultured for 1, 3 or 8 days in the presence of different doses of OSM ( range: 0.01 to 10 ng/ml) alone or in combination with LH ( 1 ng/ml). The effects of OSM and LH on cell proliferation were determined by incubating the cultures with [3H] thymidine or bromodeoxyuridine ( BrdU). Developing progenitor cells were identified histochemically by the presence of the marker enzyme 3beta-hydroxysteroid dehydrogenase (3beta-HSD). Results: OSM, when added at a dose of 10 ng/ml, caused a nearly 2-fold increase in the percentage of Leydig cell progenitors after 8 days of culture. Immunohistochemical double labelling experiments with 3beta-HSD and BrdU antibodies showed that this increase was the result of differentiation of stem Leydig cells/precursor cells and not caused by proliferation of progenitor cells themselves. The addition of LH to the cultures consistently resulted in an increase in progenitor formation throughout the culture period. Surprisingly, when OSM and LH were added together, the LH induced rise in progenitor cells was significantly inhibited after 3 and 8 days of culture. Conclusion: Taken together, the results of the present study suggest that locally produced OSM may not only play a role in the regulation of Sertoli cell proliferation and the initiation of spermatogenesis but may also play a role in the regulation of Leydig cell progenitor formation by keeping the augmenting effects of LH on this process in abeyance

    Preantral follicular atresia occurs mainly through autophagy, while antral follicles degenerate mostly through apoptosis

    Get PDF
    There is a general agreement that granulosa cell apoptosis is the cause of antral follicle attrition. Less clear is whether this pathway is also activated in case of preantral follicle degeneration, as several reports mention that the incidence of granulosa cell apoptosis in preantral follicles is negligible. Our objective is therefore to determine which cell-death pathways are involved in preantral and antral follicular degeneration.Atretic preantal and antral follicles were investigated using immunohistochemistry and laser-capture microdissection followed by quantitative real-time reverse transcription polymerase chain reaction. Microtubule-associated light-chain protein 3 (LC3), sequestosome 1 (SQSTM1/P62), Beclin1, autophagy-related protein 7 (ATG7), and cleaved caspase 3 (cCASP3) were used as markers for autophagy and apoptosis, respectively. P62 immunostaining was far less intense in granulosa cells of atretic compared to healthy preantral follicles, while no difference in LC3 and BECLIN1 immunostaining intensity was observed. This difference in P62 immunostaining was not observed in atretic antral follicles. mRNA levels of LC3 and P62 were not different between healthy and atretic (pre)antral follicles. ATG7 immunostaining was observed in granulosa cells of preantral atretic follicles, not in granulosa cells of degenerating antral follicles. The number of cCASP3-positive cells was negligible in preantral atretic follicles, while numerous in atretic antral follicles. Taken together, we conclude that preantral and antral follicular atresia is the result of activation of different cell-death pathways as antral follicular degeneration is initiated by massive granulosa cell apoptosis, while preantral follicular atresia occurs mainly via enhanced granulosa cell autophagy.</p

    Knockout of the Bcmo1 gene results in an inflammatory response in female lung, which is suppressed by dietary beta-carotene

    Get PDF
    Beta-carotene 15,15′-monooxygenase 1 knockout (Bcmo1−/−) mice accumulate beta-carotene (BC) similarly to humans, whereas wild-type (Bcmo1+/+) mice efficiently cleave BC. Bcmo1−/− mice are therefore suitable to investigate BC-induced alterations in gene expression in lung, assessed by microarray analysis. Bcmo1−/− mice receiving control diet had increased expression of inflammatory genes as compared to BC-supplemented Bcmo1−/− mice and Bcmo1+/+ mice that received either control or BC-supplemented diets. Differential gene expression in Bcmo1−/− mice was confirmed by real-time quantitative PCR. Histochemical analysis indeed showed an increase in inflammatory cells in lungs of control Bcmo1−/− mice. Supported by metabolite and gene-expression data, we hypothesize that the increased inflammatory response is due to an altered BC metabolism, resulting in an increased vitamin A requirement in Bcmo1−/− mice. This suggests that effects of BC may depend on inter-individual variations in BC-metabolizing enzymes, such as the frequently occurring human polymorphisms in BCMO1

    Standards in semen examination:publishing reproducible and reliable data based on high-quality methodology

    Get PDF
    Biomedical science is rapidly developing in terms of more transparency, openness and reproducibility of scientific publications. This is even more important for all studies that are based on results from basic semen examination. Recently two concordant documents have been published: the 6th edition of the WHO Laboratory Manual for the Examination and Processing of Human Semen, and the International Standard ISO 23162:2021. With these tools, we propose that authors should be instructed to follow these laboratory methods in order to publish studies in peer-reviewed journals, preferable by using a checklist as suggested in an Appendix to this article.Peer reviewe

    Physiological and metabolic aspects of follicular developmental competence as affected by lactational body condition loss

    No full text
    Metabolic demands of modern hybrid sows have increased over the years, which increases the chance that sows enter a substantial negative energy balance (NEB) during lactation. This NEB can negatively impact reproductive outcome, which is especially evident in primiparous sows causing a reduced second parity reproductive performance. The negative effects of the lactational NEB on reproductive performance can be partly explained by the influence of the premating metabolic state, during and after lactation, on the development of follicles from which oocytes will give rise to the next litter. In addition, the degree and type of body tissue mobilization during lactation that is, adipose tissue or lean mass, highly influences follicular development. Research investigating relations between the premating metabolic state and follicular and oocyte competence in modern hybrid sows, which experience higher metabolic demands during lactation, is limited. In this review we summarize current knowledge of physiological relations between the metabolic state of modern hybrid sows and follicular developmental competence. In addition, we discuss potential implications of these relations for current sow management strategies
    corecore