218 research outputs found

    Single Cell Transcriptomics Implicate Novel Monocyte and T Cell Immune Dysregulation in Sarcoidosis

    Get PDF
    Sarcoidosis is a systemic inflammatory disease characterized by infiltration of immune cells into granulomas. Previous gene expression studies using heterogeneous cell mixtures lack insight into cell-type-specific immune dysregulation. We performed the first single-cell RNA-sequencing study of sarcoidosis in peripheral immune cells in 48 patients and controls. Following unbiased clustering, differentially expressed genes were identified for 18 cell types and bioinformatically assessed for function and pathway enrichment. Our results reveal persistent activation of circulating classical monocytes with subsequent upregulation of trafficking molecules. Specifically, classical monocytes upregulated distinct markers of activation including adhesion molecules, pattern recognition receptors, and chemokine receptors, as well as enrichment of immunoregulatory pathways HMGB1, mTOR, and ephrin receptor signaling. Predictive modeling implicated TGFβ and mTOR signaling as drivers of persistent monocyte activation. Additionally, sarcoidosis T cell subsets displayed patterns of dysregulation. CD4 naïve T cells were enriched for markers of apoptosis and Th17/T(reg) differentiation, while effector T cells showed enrichment of anergy-related pathways. Differentially expressed genes in regulatory T cells suggested dysfunctional p53, cell death, and TNFR2 signaling. Using more sensitive technology and more precise units of measure, we identify cell-type specific, novel inflammatory and regulatory pathways. Based on our findings, we suggest a novel model involving four convergent arms of dysregulation: persistent hyperactivation of innate and adaptive immunity via classical monocytes and CD4 naïve T cells, regulatory T cell dysfunction, and effector T cell anergy. We further our understanding of the immunopathology of sarcoidosis and point to novel therapeutic targets

    Lopinavir–ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    SummaryBackground Lopinavir–ritonavir has been proposed as a treatment for COVID-19 on the basis of in vitro activity,preclinical studies, and observational studies. Here, we report the results of a randomised trial to assess whether lopinavir–ritonavir improves outcomes in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, platform trial, a range of possible treatments was compared with usual care in patients admitted to hospital with COVID-19. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients were randomly allocated to either usual standard of care alone or usual standard of care plus lopinavir–ritonavir (400 mg and 100 mg, respectively) by mouth for 10 days or until discharge (or one of the otherRECOVERY treatment groups: hydroxychloroquine, dexamethasone, or azithromycin) using web-based simple (unstratified) randomisation with allocation concealment. Randomisation to usual care was twice that of any of the active treatment groups (eg, 2:1 in favour of usual care if the patient was eligible for only one active group, 2:1:1 if the patient was eligible for two active groups). The primary outcome was 28-day all-cause mortality. Analyses weredone on an intention-to-treat basis in all randomly assigned participants. The trial is registered with ISRCTN,50189673, and ClinicalTrials.gov, NCT04381936.Findings Between March 19, 2020, and June 29, 2020, 1616 patients were randomly allocated to receive lopinavir–ritonavir and 3424 patients to receive usual care. Overall, 374 (23%) patients allocated to lopinavir–ritonavir and 767 (22%) patients allocated to usual care died within 28 days (rate ratio 1·03, 95% CI 0·91–1·17; p=0·60). Resultswere consistent across all prespecified subgroups of patients. We observed no significant difference in time until discharge alive from hospital (median 11 days [IQR 5 to >28] in both groups) or the proportion of patients discharged from hospital alive within 28 days (rate ratio 0·98, 95% CI 0·91–1·05; p=0·53). Among patients not on invasive mechanical ventilation at baseline, there was no significant difference in the proportion who met the composite endpoint of invasive mechanical ventilation or death (risk ratio 1·09, 95% CI 0·99–1·20; p=0·092).Interpretation In patients admitted to hospital with COVID-19, lopinavir–ritonavir was not associated with reductions in 28-day mortality, duration of hospital stay, or risk of progressing to invasive mechanical ventilation or death. These findings do not support the use of lopinavir–ritonavir for treatment of patients admitted to hospital with COVID-19.Funding Medical Research Council and National Institute for Health Research

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition

    Improving physical health and reducing substance use in psychosis - randomised control trial (IMPACT RCT): study protocol for a cluster randomised controlled trial

    Get PDF
    The National Institute for Health Research funds the IMPACT programme at King’s College London and South London and Maudsley NHS Foundation Trust (ref: RP-PG-0606-1049)

    Randomised feasibility trial of a teaching assistant led extracurricular physical activity intervention for 9 to 11 year olds: Action 3:30

    Get PDF
    Background: Extracurricular programmes could provide a mechanism to increase the physical activity (PA) of primary-school-aged children. The aim of this feasibility study was to examine whether the Action 3:30 intervention, which is delivered by teaching assistants, holds promise as a means of increasing the PA of Year 5 and 6 children. Methods: A cluster randomised feasibility trial was conducted in 20 primary schools. Ten schools received the Action 3:30 intervention and 10 schools were allocated to the control arm. The intervention was 40 one-hour sessions, delivered twice a week by teaching assistants. The proportion of participants recruited per school was calculated. Session delivery and session attendance was calculated for intervention schools. Weekday and after-school (3.30 to 8.30 pm) moderate to vigorous intensity physical (MVPA) was assessed by accelerometer at baseline (T0), during the last few weeks of the intervention (T1) and four months after the intervention had ended (T2). The costs of delivering the intervention were estimated. Results: Five intervention schools ran all 40 of the intended sessions. Of the remaining five, three ran 39, one ran 38 and one ran 29 sessions. Mean attendance was 53%. The adjusted difference in weekday MVPA at T1 was 4.3 minutes (95% CI −2.6 to 11.3). Sex-stratified analyses indicated that boys obtained 8.6 more minutes of weekday MVPA than the control group (95% CI 2.8 to 14.5) at T1 with no effect for girls (0.15 minutes, 95% CI −9.7 to 10.0). There was no evidence that participation in the programme increased MVPA once the club sessions ceased (T2). The indicative average cost of this intervention was £2,425 per school or £81 per participating child during its first year and £1,461 per school or £49 per participating child thereafter. Conclusions: The effect of the Action 3:30 intervention was comparable to previous physical activity interventions but further analysis indicated that there was a marked sex difference with a positive impact on boys and no evidence of an effect on girls. The Action 3:30 intervention holds considerable promise but more work is needed to enhance the effectiveness of the intervention, particularly for girls
    corecore