819 research outputs found

    Combined Cyclosporin A and Hypothermia Treatment Inhibits Activation of BV-2 Microglia but Induces an Inflammatory Response in an Ischemia/Reperfusion Hippocampal Slice Culture Model

    Get PDF
    Introduction: Hypothermia attenuates cerebral ischemia-induced neuronal cell death associated with neuroinflammation. The calcineurin inhibitor cyclosporin A (CsA) has been shown to be neuroprotective by minimizing activation of inflammatory pathways. Therefore, we investigated whether the combination of hypothermia and treatment with CsA has neuroprotective effects in an oxygen-glucose deprivation/reperfusion (OGD/R) injury model in neuronal and BV-2 microglia monocultures, as well as in an organotypic hippocampal slice culture (OHSC). Methods: Murine primary neurons, BV-2 microglia, and OHSC were pretreated with CsA and exposed to 1 h OGD (0.2% O2) followed by reperfusion at normothermia (37°C) or hypothermia (33.5°C). Cytotoxicity was measured by lactate dehydrogenase and glutamate releases. Damage-associated molecular patterns (DAMPs) high mobility group box 1 (HMGB1), heat shock protein 70 (Hsp70), and cold-inducible RNA-binding protein (CIRBP) were detected in cultured supernatant by western blot analysis. Interleukin-6 (IL-6), Interleukin-1α and -1ÎČ (IL-1α/IL1-ÎČ), tumor necrosis factor-α (TNF-α), monocyte chemotactic protein 1 (MCP1), inducible nitric oxide synthase (iNOS), glia activation factors ionized calcium-binding adapter molecule 1 (Iba1), and transforming growth factor ÎČ1 (TGF-ÎČ1) gene expressions were analyzed by RT-qPCR. Results: Exposure to OGD plus 10 ÎŒM CsA was sufficient to induce necrotic cell death and subsequent release of DAMPs in neurons but not BV-2 microglia. Moreover, OGD/R-induced secondary injury was also observed only in the neurons, which was not attenuated by cooling and no increased toxicity by CsA was observed. BV-2 microglia were not sensitive to OGD/R-induced injury but were susceptible to CsA-induced toxicity in a dose dependent manner, which was minimized by hypothermia. CsA attenuated IL-1ÎČ and Iba1 expressions in BV-2 microglia exposed to OGD/R. Hypothermia reduced IL-1ÎČ and iNOS expressions but induced TNF-α and Iba1 expressions in the microglia. However, these observations did not translate to the ex vivo OHCS model, as general high expressions of most cytokines investigated were observed. Conclusion: Treatment with CsA has neurotoxic effects on primary neurons exposed to OGD but could inhibit BV-2 microglia activation. However, CsA and hypothermia treatment after ischemia/reperfusion injury results in cytotoxic neuroinflammation in the complex ex vivo OHSC

    Post-TTM Rebound Pyrexia after Ischemia-Reperfusion Injury Results in Sterile Inflammation and Apoptosis in Cardiomyocytes

    Get PDF
    Introduction. Fever is frequently observed after acute ischemic events and is associated with poor outcome and higher mortality. Targeted temperature management (TTM) is recommended for neuroprotection in comatose cardiac arrest survivors, but pyrexia after rewarming is proven to be detrimental in clinical trials. However, the cellular mechanisms and kinetics of post- TTM rebound pyrexia remain to be elucidated. Therefore, we investigated the effects of cooling and post-TTM pyrexia on the inflammatory response and apoptosis in a cardiomyocyte ischemia-reperfusion (IR) injury model. Methods. HL-1 cardiomyocytes were divided into the following groups to investigate the effect of oxygen-glucose deprivation/reperfusion (OGD/R), hypothermia (33.5°C), and pyrexia (40°C): normoxia controls maintained at 37°C and warmed to 40°C, OGD/R groups maintained at 37°C and cooled to 33.5°C for 24 h with rewarming to 37°C, and OGD/R pyrexia groups further warmed from 37 to 40°C. Caspase-3 and RBM3 were assessed by Western blot and TNF-α, IL-6, IL-1ÎČ, SOCS3, iNOS, and RBM3 transcriptions by RT-qPCR. Results. OGD-induced oxidative stress (iNOS) in cardiomyocytes was attenuated post-TTM by cooling. Cytokine transcriptions were suppressed by OGD, while reperfusion induced significant TNF-α transcription that was exacerbated by cooling. Significant inductions of TNF-α, IL-6, IL-1ÎČ, and SOCS3 were observed in noncooled, but not in cooled and rewarmed, OGD/R-injured cardiomyocytes. Further warming to pyrexia induced a sterile inflammatory response in OGD/R-injured groups that was attenuated by previous cooling, but no inflammation was observed in pyrexic normoxia groups. Moreover, cytoprotective RBM3 expression was induced by cooling but suppressed by pyrexia, correlating with apoptotic caspase-3 activation. Conclusion. Our findings show that maintaining a period of post-TTM “therapeutic normothermia” is effective in preventing secondary apoptosis-driven myocardial cell death, thus minimizing the infarct area and further release of mediators of the innate sterile inflammatory response after acute IR injury

    The Effects of Targeted Temperature Management on Oxygen-Glucose Deprivation/Reperfusion-Induced Injury and DAMP Release in Murine Primary Cardiomyocytes

    Get PDF
    Introduction. Ischemia/Reperfusion (I/R) is a primary cause of myocardial injury after acute myocardial infarction resulting in the release of damage-associated molecular patterns (DAMPs), which can induce a sterile inflammatory response in the myocardial penumbra. Targeted temperature management (TTM) after I/R has been established for neuroprotection, but the cardioprotective effect remains to be elucidated. Therefore, we investigated the effect of TTM on cell viability, immune response, and DAMP release during oxygen-glucose deprivation/reperfusion (OGD/R) in murine primary cardiomyocytes. Methods. Primary cardiomyocytes from P1-3 mice were exposed to 2, 4, or 6 hours OGD (0.2% oxygen in medium without glucose and serum) followed by 6, 12, or 24 hours simulated reperfusion (21% oxygen in complete medium). TTM at 33.5°C was initiated intra-OGD, and a control group was maintained at 37°C normoxia. Necrosis was assessed by lactate dehydrogenase (LDH) release and apoptosis by caspase-3 activation. OGD-induced DAMP secretions were assessed by Western blotting. Inducible nitric oxide synthase (iNOS), cytokines, and antiapoptotic RBM3 and CIRBP gene expressions were measured by quantitative polymerase chain reaction. Results. Increasing duration of OGD resulted in a transition from apoptotic programmed cell death to necrosis, as observed by decreasing caspase-3 cleavage and increasing LDH release. DAMP release and iNOS expression correlated with increasing necrosis and were effectively attenuated by TTM initiated during OGD. Moreover, TTM induced expression of antiapoptotic RBM3 and CIRBP. Conclusion. TTM protects the myocardium by attenuating cardiomyocyte necrosis induced by OGD and caspase-3 activation, possibly via induction of antiapoptotic RBM3 and CIRBP expressions, during reperfusion. OGD induces increased Hsp70 and CIRBP releases, but HMGB-1 is the dominant mediator of inflammation secreted by cardiomyocytes after prolonged exposure. TTM has the potential to attenuate DAMP release

    Microcephaly is associated with impaired educational development in children with congenital heart disease

    Get PDF
    Objectives This study aims to evaluate the school careers of patients with congenital heart disease (CHD) and microcephaly. Methods An exploratory online survey was conducted on patients from a previous study on somatic development in children with CHD in 2018 (n = 2818). A total of 750 patients participated in the online survey (26.6%). This publication focuses on 91 patients (12.1%) diagnosed with CHD and microcephaly who participated in the new online survey. Results Microcephaly was significantly associated with CHD severity (p < 0.001). Microcephalic patients suffered from psychiatric comorbidity two times as often (67.0%) as non-microcephalic patients (29.8%). In particular, the percentage of patients with developmental delay, intellectual debility, social disability, learning disorder, or language disorder was significantly increased in microcephalic CHD patients (p < 0.001). A total of 85.7% of microcephalic patients and 47.6% of non-microcephalic patients received early interventions to foster their development. The school enrollment of both groups was similar at approximately six years of age. However, 89.9% of non-microcephalic but only 51.6% of microcephalic patients were enrolled in a regular elementary school. Regarding secondary school, only half as many microcephalic patients (14.3%) went to grammar school, while the proportion of pupils at special schools was eight times higher. Supportive interventions, e.g., for specific learning disabilities, were used by 52.7% of microcephalic patients and 21.6% of non-microcephalic patients. Conclusion Patients with CHD and microcephaly are at high risk for impaired educational development. Early identification should alert clinicians to provide targeted interventions to optimize the developmental potential

    New Insights into the Education of Children with Congenital Heart Disease with and without Trisomy 21

    Get PDF
    Background and Objectives: Patients with congenital heart disease (CHD), especially as a concomitant syndromal disease of trisomy 21 (T21), are at risk for impaired neurodevelopment. This can also affect these patients’ education. However, there continues to be a research gap in the educational development of CHD patients and T21 CHD patients. Materials and Methods: In total, data from 2873 patients from the German National Register for Congenital Heart Defects were analyzed. The data are based on two online education surveys conducted among patients registered in the National Register for Congenital Heart Defects (2017, 2020). Results: Of 2873 patients included (mean age: 14.1 ± 4.7 years, 50.5% female), 109 (3.8%) were identified with T21 (mean age: 12.9 ± 4.4 years, 49.5% female). T21 CHD participants had a high demand for early specific interventions (overall cohort 49.1%; T21 cohort 100%). T21 CHD children more frequently attended special schools and, compared to non-trisomy 21 (nT21) CHD patients, the probability of attending a grammar school was reduced. In total, 87.1% of nT21 CHD patients but 11% of T21 CHD patients were enrolled in a regular elementary school, and 12.8% of T21 CHD patients could transfer to a secondary school in contrast to 35.5% of nT21 CHD patients. Most of the T21 CHD patients were diagnosed with psychiatric disorders, e.g., learning, emotional, or behavioral disorders (T21 CHD patients: 82.6%; nT21 CHD patients: 31.4%; p < 0.001). Conclusions: CHD patients are at risk for impaired academic development, and the presence of T21 is an aggravating factor. Routine follow-up examinations should be established to identify developmental deficits and to provide targeted interventions

    A gain-of-function TBX20 mutation causes congenital atrial septal defects, patent foramen ovale and cardiac valve defects

    Get PDF
    BACKGROUND: Ostium secundum atrial septal defects (ASDII) account for approximately 10% of all congenital heart defects (CHD) and mutations in cardiac transcription factors, including TBX20, were identified as an underlying cause for ASDII. However, very little is known about disease penetrance in families and functional consequences of inherited TBX20 mutations. METHODS: The coding region of TBX20 was directly sequenced in 170 ASDII patients. Functional consequences of one novel mutation were investigated by surface plasmon resonance, CD spectropolarymetry, fluorescence spectrophotometry, luciferase assay and chromatin immunoprecipitation. RESULTS: We found a novel mutation in a highly conserved residue in the T-box DNA-binding domain (I121M) segregating with CHD in a three generation kindred. Four mutation carriers revealed cardiac phenotypes in terms of cribriform ASDII, large patent foramen ovale or cardiac valve defects. Interestingly, tertiary hydrophobic interactions within the mutant TBX20 T-box were significantly altered leading to a more dynamic structure of the protein. Moreover, Tbx20-I121M resulted in a significantly enhanced transcriptional activity, which was further increased in the presence of co-transcription factors GATA4/5 and NKX2-5. Occupancy of DNA binding sites on target genes was also increased. CONCLUSIONS: We suggest that TBX20-I121M adopts a more fluid tertiary structure leading to enhanced interactions with cofactors and more stable transcriptional complexes on target DNA sequences. Our data, combined with that of others, suggest that human ASDII may be related to loss- as well as gain-of-function TBX20 mutations

    Hypoxia-Inducible Factor 1α Determines Gastric Cancer Chemosensitivity via Modulation of p53 and NF-ÎșB

    Get PDF
    BACKGROUND: Reduced chemosensitivity of solid cancer cells represents a pivotal obstacle in clinical oncology. Hence, the molecular characterization of pathways regulating chemosensitivity is a central prerequisite to improve cancer therapy. The hypoxia-inducible factor HIF-1alpha has been linked to chemosensitivity while the underlying molecular mechanisms remain largely elusive. Therefore, we comprehensively analysed HIF-1alpha's role in determining chemosensitivity focussing on responsible molecular pathways. METHODOLOGY AND PRINCIPAL FINDINGS: RNA interference was applied to inactivate HIF-1alpha or p53 in the human gastric cancer cell lines AGS and MKN28. The chemotherapeutic agents 5-fluorouracil and cisplatin were used and chemosensitivity was assessed by cell proliferation assays as well as determination of cell cycle distribution and apoptosis. Expression of p53 and p53 target proteins was analyzed by western blot. NF-kappaB activity was characterized by means of electrophoretic mobility shift assay. Inactivation of HIF-1alpha in gastric cancer cells resulted in robust elevation of chemosensitivity. Accordingly, HIF-1alpha-competent cells displayed a significant reduction of chemotherapy-induced senescence and apoptosis. Remarkably, this phenotype was completely absent in p53 mutant cells while inactivation of p53 per se did not affect chemosensitivity. HIF-1alpha markedly suppressed chemotherapy-induced activation of p53 and p21 as well as the retinoblastoma protein, eventually resulting in cell cycle arrest. Reduced formation of reactive oxygen species in HIF-1alpha-competent cells was identified as the molecular mechanism of HIF-1alpha-mediated inhibition of p53. Furthermore, loss of HIF-1alpha abrogated, in a p53-dependent manner, chemotherapy-induced DNA-binding of NF-kappaB and expression of anti-apoptotic NF-kappaB target genes. Accordingly, reconstitution of the NF-kappaB subunit p65 reversed the increased chemosensitivity of HIF-1alpha-deficient cells. CONCLUSION AND SIGNIFICANCE: In summary, we identified HIF-1alpha as a potent regulator of p53 and NF-kappaB activity under conditions of genotoxic stress. We conclude that p53 mutations in human tumors hold the potential to confound the efficacy of HIF-1-inhibitors in cancer therapy

    Limit on the Radiative Neutrinoless Double Electron Capture of 36^{36}Ar from GERDA Phase I

    Get PDF
    Neutrinoless double electron capture is a process that, if detected, would give evidence of lepton number violation and the Majorana nature of neutrinos. A search for neutrinoless double electron capture of 36^{36}Ar has been performed with germanium detectors installed in liquid argon using data from Phase I of the GERmanium Detector Array (GERDA) experiment at the Gran Sasso Laboratory of INFN, Italy. No signal was observed and an experimental lower limit on the half-life of the radiative neutrinoless double electron capture of 36^{36}Ar was established: T1/2>T_{1/2} > 3.6 ×\times 1021^{21} yr at 90 % C.I.Comment: 7 pages, 3 figure

    Promising results of a clinical feasibility study: CIRBP as a potential biomarker in pediatric cardiac surgery

    Get PDF
    ObjectiveCold-inducible RNA binding Protein (CIRBP) has been shown to be a potent inflammatory mediator and could serve as a novel biomarker for inflammation. Systemic inflammatory response syndrome (SIRS) and capillary leak syndrome (CLS) are frequent complications after pediatric cardiac surgery increasing morbidity, therefore early diagnosis and therapy is crucial. As CIRBP serum levels have not been analyzed in a pediatric population, we conducted a clinical feasibility establishing a customized magnetic bead panel analyzing CIRBP in pediatric patients undergoing cardiac surgery.MethodsA prospective hypothesis generating observational clinical study was conducted at the German Heart Center Berlin during a period of 9 months starting in May 2020 (DRKS00020885, https://drks.de/search/de/trial/DRKS00020885). Serum samples were obtained before the cardiac operation, upon arrival at the pediatric intensive care unit, 6 and 24 h after the operation in patients up to 18 years of age with congenital heart disease (CHD). Customized multiplex magnetic bead-based immunoassay panels were developed to analyze CIRBP, Interleukin-1ÎČ (IL-1ÎČ), Interleukin-6 (IL-6), Interleukin-8 (IL-8), Interleukin-10 (IL-10), Monocyte chemotactic protein 1 (MCP-1), Syndecan-1 (SDC-1), Thrombomodulin (TM), Vascular endothelial growth factor (VEGF-A), Angiopoietin-2 (Ang-2), and Fibroblast growth factor 23 (FGF-23) in 25 ”l serum using the Luminex MagPixÂź system.Results19 patients representing a broad range of CHD (10 male patients, median age 2 years, 9 female patients, median age 3 years) were included in the feasibility study. CIRBP was detectable in the whole patient cohort. Relative to individual baseline values, CIRBP concentrations increased 6 h after operation and returned to baseline levels over time. IL-6, IL-8, IL-10, and MCP-1 concentrations were significantly increased after operation and except for MCP-1 concentrations stayed upregulated over time. SDC-1, TM, Ang-2, as well as FGF-23 concentrations were also significantly increased, whereas VEGF-A concentration was significantly decreased after surgery.DiscussionUsing customized magnetic bead panels, we were able to detect CIRBP in a minimal serum volume (25 ”l) in all enrolled patients. To our knowledge this is the first clinical study to assess CIRBP serum concentrations in a pediatric population

    Flux Modulations seen by the Muon Veto of the GERDA Experiment

    Full text link
    The GERDA experiment at LNGS of INFN is equipped with an active muon veto. The main part of the system is a water Cherenkov veto with 66~PMTs in the water tank surrounding the GERDA cryostat. The muon flux recorded by this veto shows a seasonal modulation. Two effects have been identified which are caused by secondary muons from the CNGS neutrino beam (2.2 %) and a temperature modulation of the atmosphere (1.4 %). A mean cosmic muon rate of IÎŒ0=(3.477±0.002stat±0.067sys)×10−4I^0_{\mu} = (3.477 \pm 0.002_{\textrm{stat}} \pm 0.067_{\textrm{sys}}) \times 10^{-4}/(s⋅\cdotm2^2) was found in good agreement with other experiments at LNGS at a depth of 3500~meter water equivalent.Comment: 7 pages, 6 figure
    • 

    corecore