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Introduction. Fever is frequently observed after acute ischemic events and is associated with poor outcome and higher mortality.
Targeted temperature management (TTM) is recommended for neuroprotection in comatose cardiac arrest survivors, but
pyrexia after rewarming is proven to be detrimental in clinical trials. However, the cellular mechanisms and kinetics of post-
TTM rebound pyrexia remain to be elucidated. Therefore, we investigated the effects of cooling and post-TTM pyrexia on the
inflammatory response and apoptosis in a cardiomyocyte ischemia-reperfusion (IR) injury model. Methods. HL-1
cardiomyocytes were divided into the following groups to investigate the effect of oxygen-glucose deprivation/reperfusion
(OGD/R), hypothermia (33.5°C), and pyrexia (40°C): normoxia controls maintained at 37°C and warmed to 40°C, OGD/R
groups maintained at 37°C and cooled to 33.5°C for 24 h with rewarming to 37°C, and OGD/R pyrexia groups further warmed
from 37 to 40°C. Caspase-3 and RBM3 were assessed by Western blot and TNF-α, IL-6, IL-1β, SOCS3, iNOS, and RBM3
transcriptions by RT-qPCR. Results. OGD-induced oxidative stress (iNOS) in cardiomyocytes was attenuated post-TTM by
cooling. Cytokine transcriptions were suppressed by OGD, while reperfusion induced significant TNF-α transcription that was
exacerbated by cooling. Significant inductions of TNF-α, IL-6, IL-1β, and SOCS3 were observed in noncooled, but not in cooled
and rewarmed, OGD/R-injured cardiomyocytes. Further warming to pyrexia induced a sterile inflammatory response in
OGD/R-injured groups that was attenuated by previous cooling, but no inflammation was observed in pyrexic normoxia groups.
Moreover, cytoprotective RBM3 expression was induced by cooling but suppressed by pyrexia, correlating with apoptotic
caspase-3 activation. Conclusion. Our findings show that maintaining a period of post-TTM “therapeutic normothermia” is
effective in preventing secondary apoptosis-driven myocardial cell death, thus minimizing the infarct area and further release of
mediators of the innate sterile inflammatory response after acute IR injury.

1. Introduction

Therapeutic hypothermia (TH) is the standard of care for
neuroprotection in selected term newborns with hypoxic-
ischemic encephalopathy (HIE) and is most effective when
applied at 33.5°C for 72 hours [1]. Currently, a targeted tem-
perature management (TTM) of 32-36°C for 24-48 hours is
the recommended guideline for mitigating neurological
injury in comatose adults with out-of-hospital cardiac arrest
[2, 3]. However, the development of fever after rewarming

from TTM, termed rebound pyrexia, has been observed in
41% of surviving patients in a multicenter cohort study [4].
They defined pyrexia as a temperature ≥ 38°C within 24h
following rewarming from postarrest TTM, and pyrexia
temperature > 38:7°C was associated with worse neurological
outcome but not overall lower survival at discharge. Recent
randomized TTM control trials even suggest that the preven-
tion of fever or temperature variability by actively maintain-
ing the patient’s temperature at 36°C may be just as effective
for long-term neurological outcomes as applying mild TH to
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approximately 33°C [5, 6]. Moreover, Rungatscher et al.
observed that postoperative hyperthermia (>37°C) after
rewarming from deep hypothermic circulatory arrest was
associated with increased morbidity and mortality [7]. While
the adverse effects of experimentally induced fever on neuro-
nal damage after global ischemia have been observed [8], the
effects of post-TTM rebound pyrexia on ischemia-reperfu-
sion- (IR-) injured cardiomyocytes remain to be elucidated.

Acute myocardial infarction (AMI) has been shown to
result in increased expression of proinflammatory cytokines,
including tumor necrosis factor- (TNF-) α, interleukin- (IL-)
6, and IL-1β [9], that can lead to cardiac cell death and dys-
function, as well as ventricular remodeling [10]. Moreover,
elevated blood concentrations of IL-6 and TNF-α have been
reported as independent predictors of mortality in this
cohort [11, 12]. Although the majority of proinflammatory
cytokines and chemokines are derived from infiltrating
monocytes/macrophages to the infarct site after AMI, they
are also expressed and secreted by resident cardiac cells
[13]. Cardiomyocytes make up 25% of cells in the normal
heart and play an active role in mediating innate inflam-
matory responses, which can result in acute inflammation
after IR injury [14]. Therefore, controlling cytokine release
from resident cardiomyocytes is a plausible strategy for
preventing further tissue damage following prolonged
ischemia-reperfusion injury.

We previously demonstrated that IR injury simulated by
exposure to oxygen-glucose deprivation (OGD) and subse-
quent reperfusion (OGD/R) resulted in reduced ATP pro-
duction, leading to myocardial cell death [15]. Moreover,
intra-OGD therapeutic hypothermia (IOTH) attenuated
mitochondrial impairment, restored cellular metabolic activ-
ity, attenuated cardiomyocyte cell death, and induced RNA
binding motif protein 3 (RBM3) expression, a cold shock
protein with cytoprotective properties that is expressed in
response to hypothermia and various other mild stresses
[15, 16]. However, the effect of hypothermia and subsequent
rewarming to normothermia or pyrexia on the sterile
inflammatory response in an OGD/R cardiomyocyte injury
model remains to be elucidated. Therefore, we investigated
the efficacy of moderate therapeutic hypothermia (33.5°C) to
attenuate the ischemia/reperfusion injury-mediated sterile
inflammatory response and the adverse effects of rebound
pyrexia in a murine cardiomyocyte model. Additionally, we
also investigated the effect of rebound pyrexia on RBM3
expression and further myocardial cell death after an acute
ischemia-reperfusion injury.

2. Materials and Methods

2.1. HL-1 Cell Culture. HL-1 cardiomyocytes are derived
from the murine atrial AT-1 tumor cell lineage and were
obtained fromWilliam C. Claycomb, Ph.D. (LSU Health Sci-
ences Center, New Orleans, LA, USA). They are reported to
show spontaneous contractions and a phenotype comparable
to adult cardiomyocytes [17] and were cultured following the
methods of Krech et al. [16]. Briefly, culture flasks and Petri
dishes were precoated with 0.2 μg/cm2

fibronectin in 0.02%
gelatine for 1 h at 37°C. Cardiomyocytes were cultured at

21% O2 and 5% CO2 in Claycomb Medium (Sigma-Aldrich),
supplemented with 10% FBS (Sigma-Aldrich), 50 μg/ml Pri-
mocin (InvivoGen), 2mM L-glutamine (Merck Millipore),
and 0.1mM norepinephrine (Sigma-Aldrich). Cells were
passaged upon reaching 90% confluency at 1 : 2 to 1 : 5 using
trypsin/EDTA (0.05/0.02%, respectively; Biochrom). HL-1
cardiomyocytes were divided into the following groups to
investigate the effect of OGD/R, hypothermia (33.5°C), and
pyrexia (40°C): normoxia control groups maintained at
37°C and warmed to 40°C, OGD/R groups maintained at
37°C and cooled to 33.5°C for 24 hours with subsequent
rewarming to 37°C, and OGD/R pyrexia groups further
warmed from 37 to 40°C.

2.2. Oxygen-Glucose Deprivation/Reperfusion (OGD/R).
Ischemia-reperfusion injury was simulated in vitro by expo-
sure to OGD/R, as previously established in our laboratory
[16]. Briefly, HL-1 cardiomyocytes were deprived of oxy-
gen and glucose for 6 hours in glucose/serum-free DMEM
(Biochrom) at 0.2% O2 and 5% CO2 in a CO2 incubator
(Binder) [15]. Control groups were kept at normoxia (21%
O2) in DMEM containing glucose (Biochrom) and 10%
FBS (Biochrom). After 6h of OGD, reperfusion was simulated
by restoration of nutrients in complete Claycomb Medium
(Sigma-Aldrich) and 21% O2 in all the groups. All experi-
mental media were supplemented with 50 μg/ml Primocin
(InvivoGen) and 2mM L-glutamine (Merck Millipore).

2.3. Targeted Temperature Management (TTM). We pre-
viously established a time-temperature protocol for intrais-
chemic cooling (33.5°C) for the HL-1 cardiomyocytes,
based on the guidelines from the European Resuscitation
Council for cardiac arrest survivors (see Figure 1) [15, 18].
Briefly, normothermic OGD/R-injured groups were main-
tained at 37°C for the duration of the experiment, while
TTM groups were cooled to 33.5°C after 3-hour exposure to
OGD and maintained during simulated reperfusion for 24
hours. All experimental cooled groups were then rewarmed
to and maintained at 37°C. Cooled pyrexia groups were
maintained at 37°C for only 2 hours, then along with nor-
mothermic pyrexia groups further warmed to 40°C at 29 h
after experimental start and maintained for an additional
24 hours. Samples were analyzed directly after OGD (6h),
2 hours into the early reperfusion phase (8 h), the end of
the cooling phase (27 h), 2 hours after rewarming to normo-
thermia (29 h), and 2, 12, and 24 hours after initiation of
pyrexia (31, 41, and 53h after experimental start, respec-
tively) in order to thoroughly investigate the effects of
OGD/R, TTM, and pyrexia on the cardiomyocytes.

2.4. Protein Extraction and Western Blot Analysis. Caspase-3
activation and RBM3 expression were assessed by Western
blot following the methods of Krech et al. [16]. Briefly, HL-
1 cardiomyocytes were seeded onto 22 cm2 cell culture dishes
at a density of 5 × 105 cells per dish 48 h before conducting
the experiments as described above. Attached cells were
mechanically scratched off the plate surface and lysed using
a modified RIPA buffer (50mM Tris-HCl, pH7.5), 150mM
sodium chloride, 1% Triton X-100, 0.1% sodium dodecyl
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sulfate, 0.5% Na-deoxycholate, 2mM ethylenediaminetetra-
acetic acid, 1mM phenylmethylsulfonyl fluoride, sodium
fluoride, and protease inhibitor cocktail 3 (all from Sigma-
Aldrich) and quantified using a BCA-Protein Assay Kit
(Pierce Biotechnology). Protein extracts (30 μg) were electro-
phoresed on 15% SDS polyacrylamide gels and transferred to
PVDFmembranes. Membranes were blocked with 5% nonfat
dried milk powder in Tris-buffered saline+0.1% Tween-20
and incubated with anti-caspase-3 (1 : 500) and anti-RBM3
(1 : 1000) or blocked with 5% BSA for incubation with
anti-β-actin (1 : 15,000) at 4°C overnight. All primary anti-
bodies were rabbit polyclonals purchased from Cell Signal-
ing Technology. An HRP-conjugated donkey anti-rabbit
secondary antibody (Dianova) was incubated for 1 h and
detected with SuperSignal™ West Dura Chemiluminescent
Substrate (Pierce Biotechnology). Densitometry quantifica-
tion of the Western blots was performed using Image Lab
(Bio-Rad Laboratories) and normalized to β-actin for equal
protein loading.

2.5. RNA Isolation and RT-qPCR. Sterile inflammatory
response was assessed by real-time quantitative PCR (RT-
qPCR). Total RNA from HL-1 cardiomyocytes was isolated
using the GeneMatrix Universal RNA Purification Kit
(Roboklon) according to the manufacturer’s instructions.
RNA concentration and purity were determined by spectro-
photometric measurements at 260 and 280 nm using Nano-
Drop 2000 (NanoDrop) and agarose gel electrophoresis.
cDNA was transcribed from 1.5 μg total RNA using a
High-Capacity cDNA Reverse Transcription Kit (Applied
Biosystems) using a PTC200 Thermal Cycler (MJ Research).

Expression of target genes and the endogenous control
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was
assessed by real-time qPCR using the TaqMan® Gene
Expression Assays (see Table 1) and StepOnePlus™ Real-
Time PCR System (Applied Biosystems) according to the
manufacturer’s recommendations. Reactions with no reverse
transcripts and templates were included as negative controls.
Relative quantification of gene expression was normalized to
the housekeeping gene GAPDH, using the 2-ΔΔct method,
and illustrated as fold change [15].

2.6. Statistical Analysis. Data were analyzed and graphed
using GraphPad Prism 5 (GraphPad Software). Results
were expressed as means ± standard deviations. Experiments
were independently repeated at least three times. One-way
ANOVA followed by Tukey’s posttest was used for multiple
group comparison, and p < 0:05 was considered statistically
significant.

0 h 3 h 6 h 8 h 27 h 29 h 31 h 41 h 53 h
2 h pyrexia 12 h pyrexia 24 h pyrexia

Time
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Figure 1: Experimental time-temperature protocol. Normothermic OGD/R-injured groups were maintained at 37°C for the duration of the
experiment, while TTM groups were cooled to 33.5°C after 3-hour exposure to OGD and maintained during simulated reperfusion for 24
hours. All experimental cooled groups were then rewarmed to and maintained at 37°C. Cooled pyrexia groups were maintained at 37°C
for only 2 hours and then along with normothermic pyrexia groups further warmed to 40°C at 29 h after experimental start and
maintained for an additional 24 hours. Samples were analyzed directly after OGD (6 h), 2 hours into the early reperfusion phase (8 h), the
end of the cooling phase (27 h), 2 hours after rewarming to normothermia (29 h), and then 2, 12, and 24 hours after initiation of pyrexia
(31, 41, and 53 h after experimental start, respectively).

Table 1: TaqMan® Gene Expression Assays.

Gene Assay ID

GAPDH 99999915_g1

IL-1β 00434228_m1

IL-6 00446190_m1

iNOS 00440502_m1

RBM3 01609819_g1

SOCS3 00545913_s1

TNF-α 00443260_g1
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3. Results

3.1. OGD/R Induces Oxidative Stress in HL-1 Cardiomyocytes.
We investigated the effect of exposure to OGD/R, hypother-
mia, and pyrexia on the inducible NO synthase (iNOS)
expression in the HL-1 cardiomyocytes (see Figure 2) and
observed a significant increase in iNOS expression relative
to normoxia control after exposure to OGD that was not
attenuated by the brief period of hypothermia (6 h), but no
significant increases were observed in the reperfusion phase
(8–27 h). Even after posthypothermia rewarming to 37°C,
iNOS transcription stayed significantly attenuated by cooling
compared to noncooled OGD/R groups (29–41 h). Further
warming to pyrexia also resulted in a significant increase in
iNOS expression (31-53 h) that was attenuated by cooling
in the early pyrexia phase (31-41 h), but not after 24 hours
(53 h). Interestingly, exposure to pyrexia alone did not induce
increased iNOS transcription in the undamaged control car-
diomyocytes that were warmed to pyrexia.

3.2. OGD/R-Induced Sterile Inflammatory Response Is
Exacerbated by Pyrexia. We investigated the effect of hypo-
thermia and subsequent warming to pyrexia on OGD/R-
induced TNF-α (see Figure 3(a)), IL-6 (see Figure 3(b)),
and IL-1β (see Figure 3(c)) expression, as well as the negative
regulator of cytokine signaling, SOCS-3 (see Figure 3(d)), in
the HL-1 cardiomyocytes. A significant decrease in TNF-α
transcription relative to normoxia control was observed after
exposure to OGD (6h) that was followed by a significant
spike in the early reperfusion phase, which was augmented
by cooling (8 h). TNF-α transcription eventually diminished
to normoxia control levels in the cooled groups (27–53 h),
but stayed significantly higher in the noncooled groups
at the later reperfusion time points (31-41 h). Warming
OGD/R-injured cardiomyocytes to pyrexia also resulted in
significantly higher TNF-α transcription relative to normoxia

controls at 37°C as well as normoxia groups warmed to
pyrexia (31–53 h), but not to the OGD/R-injured groups that
were either maintained at or rewarmed to 37°C (31-41 h).
Additionally, no significant attenuations by cooling were
observed in the OGD/R-injured groups after 24-hour expo-
sure to pyrexia (53 h).

Similar to TNF-α, IL-6 transcription was also signifi-
cantly suppressed relative to normoxia control by exposure
to OGD (6h). Unlike TNF-α, IL-6 transcription did not peak
in the reperfusion phase (8-29 h). A brief increase in IL-6
transcription was observed in the noncooled OGD/R group,
but not in the cooled OGD/R group in the late reperfusion
phase (31 h). Further warming to pyrexia resulted in the
greatest increases in IL-6 transcriptions in both cooled and
noncooled OGD/R groups relative to both normoxia control
and OGD/R groups maintained at or rewarmed to 37°C
(41 and 53 h). Even though previous cooling attenuated this
increase in IL-6 after 12-hour exposure to pyrexia (41 h) in
the cooled OGD/R group compared to the noncooled
OGD/R group, this protective effect was no longer observed
after 24-hour exposure to pyrexia (53 h). Pyrexia alone how-
ever did not induce IL-6 expression in the undamaged nor-
moxia control cardiomyocytes.

The expression of IL-1β was observed to be compara-
ble to IL-6 expressions in all experimental groups during
the OGD/R phase and was not significantly induced by
hypothermia. However, a significantly lower IL-1β transcrip-
tion was observed in the cooled OGD/R group rewarmed
to 37°C relative to the noncooled OGD/R-injured group
(31 h). Moreover, warming to pyrexia resulted in a significant
increase in IL-1β transcription in the noncooled OGD/R-
injured group (53 h).

Suppressor of cytokine signaling 3 (SOCS-3) gene expres-
sion was significantly decreased by OGD (6h) relative to
normoxia control, recovered to normoxia level in the reper-
fusion phase, and was significantly induced in the noncooled

6 h 8 h 27 h 31 h 41 h 53 h

OGD+reperfusionOGD

12

10

8

6

4

2

0

37 °C
33.5 °C
33.5 37 °C

Normoxia 37 40 °C
37 40 °C
33.5 40 °C

⁎

⁎
⁎⁎

⁎

⁎

#

#
#

#

#

#
m

RN
A

 iN
os

x
-fo

ld
 in

cr
ea

se
 (n

or
m

ox
ia

 3
7 

°C
 =

 1
)

Figure 2: Hypothermia attenuated OGD/R- and pyrexia-induced iNOS expression in the HL-1 cardiomyocytes in the late reperfusion and
pyrexia phase (31–53 h). Data from 3 to 5 independent experiments is presented as mean ± SD. ∗p ≤ 0:05 and #p ≤ 0:05 as compared to
normoxia control at 37°C (normalized to 1).
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OGD/R-injured group but not in the cooled groups (29 and
31 h). Rewarming to pyrexia, however, induced significant
increases in SOCS-3 transcription in the OGD/R-injured
cardiomyocytes compared to both normoxia control and
corresponding OGD/R-injured groups maintained at or
rewarmed to 37°C (41 and 53 h), which was briefly attenuated
by previous cooling after 12-hour exposure to pyrexia (41 h).
Interestingly, no significant increased SOCS-3 expression
was observed in the undamaged normoxia control cardio-
myocytes warmed to 40°C.

3.3. Cold Shock RBM3 Is Induced by Hypothermia and
Suppressed by Pyrexia. Exposure to moderate hypothermia
for 24 hours significantly induced both RBM3 mRNA and

protein expressions in the HL-1 cardiomyocytes (27 h) (see
Figure 4). Induced RBM3 expression was observable up to
14 hours after rewarming to normothermia (37°C at 29, 31,
and 41h), 2 hours after further warming to pyrexia (31 h),
and gradually returned to baseline levels after 24 hours. How-
ever, prolonged exposure to pyrexia for 24 hours resulted in a
significant suppression of RBM3 expression in all groups at
the mRNA and protein levels (53 h).

3.4. Pyrexia Induces Apoptosis in OGD/R-Injured
Cardiomyocytes. Further warming to fever induced a second-
ary cell death mechanism in the cardiomyocytes exposed to
OGD/R. We observed significant increases in caspase-3 acti-
vation, a hallmark of the apoptosis programmed cell death
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Figure 3: (a) TNF-α expression was suppressed by OGD (6 h). OGD/R-induced damage leads to a significant increase in TNF-α expression
relative to normoxia control in the early reperfusion phase (8 h), which was significantly higher in the cooled than in the noncooled group.
During late reperfusion (31 and 41 h), however, the noncooled OGD/R-injured group stayed significantly elevated, whereas the cooled group
showed no such effect. Further warming to pyrexia induced TNF-α expression in OGD/R-injured groups irrespective of previous temperature
management. (b) IL-6 expression was suppressed by OGD (6 h), and hypothermia temporarily attenuated pyrexia-induced IL-6 expression in
OGD/R-injured cardiomyocytes (41 h). (c) Pyrexia increased IL-1β expression in noncooled OGD/R-injured cardiomyocytes that was not
attenuated by hypothermia (53 h). (d) SOCS-3 expression was significantly inhibited by OGD (6 h) and increased during late reperfusion
(31 h) in the noncooled OGD/R-injured groups. Warming to pyrexia significantly induced SOCS-3 expression in both cooled and
noncooled OGD/R-injured cardiomyocytes and was briefly attenuated by hypothermia (41 h). Data from 3 to 5 independent experiments
is presented as mean ± SD. ∗p ≤ 0:05 and #p ≤ 0:05 as compared to normoxia control at 37°C (normalized to 1).
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mechanism, in OGD/R-injured cardiomyocytes after warm-
ing to pyrexia at 41 h and 53 h (see Figure 5). Previous treat-
ment with cooling could temporarily attenuate caspase-3
cleavage at 41 h but could not maintain protection for a pro-
longed exposure to pyrexia (53 h). Pyrexia in noninjured car-
diomyocytes also led to apoptosis (31 and 53h), but to a
significantly lesser extent than in the OGD/R-injured cells
(41 and 53 h). Rewarming of the OGD/R-injured cardiomyo-
cytes to normothermia however did not result in increased
activation of caspase-3.

4. Discussion

Ischemia-reperfusion injury causes myocardial cell death by
inducing intracellular calcium overload, oxidative stress,
and inflammation, which can be exacerbated by pyrexia. IR
induces necrotic cell death during the ischemic phase followed

by ATP-dependent apoptotic signaling cascades during the
reperfusion phase, leading to an apoptosis-induced secondary
cell death that can account for up to 50% of the infarct area
[16]. Correspondingly, we previously observed that exposure
to OGD induces mitochondrial dysfunction and cell death in
the HL-1 cardiomyocytes that could be attenuated by hypo-
thermia [15, 16]. OGD/R as well as changes in temperature
can cause increased production of reactive oxygen species
or free radicals, resulting in oxidative stress and terminal
apoptosis and/or cell death [19]. In correlation with previous
findings, we observed an increase in OGD/R-induced iNOS
transcription that was also attenuated by cooling in the HL-1
cardiomyocytes, presumably due to the inhibition of nuclear
factor kappa B (NF-κB) translocation to the nucleus [20].

While necrosis is generally observed after an acute
ischemic incident, apoptosis is the primary myocardial cell
death mechanism following reperfusion. We did not observe
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Figure 4: Hypothermia induces while pyrexia inhibits RBM3 (a) mRNA transcriptions and (b) intracellular protein levels in HL-1
cardiomyocytes. Data from 3 to 5 independent experiments is presented as mean ± SD. ∗p ≤ 0:05 and #p ≤ 0:05 as compared to normoxia
control at 37°C (normalized to 1).
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the induction of apoptosis in the reperfusion phase, but warm-
ing to pyrexia after OGD/R with or without hypothermia
resulted in the induction of apoptosis, as evidenced by signif-
icant increases in the cleavage of caspase-3 (53h). Unlike
necrosis, apoptosis can have beneficial effects and be reversed
by the activation of prosurvival pathways, including the Janus
kinase- (JAK-) STAT signaling pathway in which cardiac-
specific SOCS-3 plays a key role in promoting myocardial
IR-induced injury [21]. Nagata et al. observed that induced
cardiac-specific SOCS-3 expression correlated with decreased
activation of prosurvival STAT3, AKT, and ERK1/2, as well
as decreased expression of myeloid cell leukemia-1 (Mcl-1),
a member of the antiapoptotic Bcl-2 family. Moreover, they
also observed significantly reduced cleavage of caspase-3
and smaller infarct sizes in cardiac-specific SOCS-3-KOmice
at 6 hours and 24 hours after reperfusion, respectively [22].
This is in correlation with our findings that pyrexia induces
SOCS-3 expression, resulting in increased cleavage of cas-
pase-3, which could be temporarily attenuated by hypother-
mia. We previously observed that hypothermia significantly
increased the Bcl-2/Bax ratio to protect OGD/R-injured
HL-1 cardiomyocytes from apoptosis [16] but did not
observe any significant increases upon warming to pyrexia
(data not shown). However, the expression of Mcl-1 warrants
further investigation as a key STAT3 activator gene of apo-
ptosis after myocardial IR-induced injury.

Moreover, our observation of suppressed RBM3 expres-
sion by pyrexia in the HL-1 cardiomyocytes corresponds
with previous findings that showed that blood RBM3 mRNA
levels were also decreased in febrile children [23]. RBM3 has
been shown in vitro to have antiapoptotic effects in a variety
of cellular stress situations, including OGD/R, staurosporine,
H2O2, and nitric oxide (NO) treatment, by attenuating

caspase-3 activation and PARP cleavage, as well as inducing
Bcl-2 expression [24–26]. Our observation of increased
caspase-3 activation in conjunction with suppressed RBM3
expression by pyrexia in OGD/R-injured cardiomyocytes
further supports the cytoprotective properties of RBM3 and
warrants further investigation as a promising therapeutic
strategy against IR injury.

The heart is normally not a key source of inflammatory
cytokines and therefore is not considered an immunologi-
cally active organ [27]. However, a variety of stresses, includ-
ing infection by pathogens, mechanical stretch, oxidative
stress, and ischemia, can induce innate immune responses
that can lead to acute inflammation, and the extent of the
inflammatory response after an acute ischemic incident is a
key factor that dictates the severity of damage to cardiac tissue.
Moreover, IR injury induces the release of host damage-
associated molecular patterns (DAMPs) into the extracellular
matrix where they bind to various pattern recognition recep-
tors (PRRs) on the surface of neighboring structural cardiac
cells, such as cardiomyocytes, endothelial cells, and fibroblasts,
or recruited immune cells to also activate endogenous
inflammatory signaling cascades (see Figure 6). This activates
various signaling transcription factors, in particular NF-κB,
to induce the expression of proinflammatory cytokines,
including IL-1β, IL-18, IL-6, and TNF-α [28].

In correlation with previous reported findings [27], we
did not observe significant changes in IL-1β transcription
after exposure to OGD/R and hypothermia followed by
rewarming to normothermia. However, we did observe sig-
nificant increases in IL-1β transcription after prolonged
exposure to pyrexia (53 h), which could be attenuated by pre-
ceding hypothermia. Interestingly, this pyrexia-induced
expression of IL-1β correlates with the significant induction
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of IL-6 transcription observed at the same time point after
warming to pyrexia. Our findings further support previous
reports of increased IL-6 expression in cardiomyocytes in
response to increased IL-1β [28], which acts to recruit leuko-
cytes and propagates inflammation in the heart [29]. We
also observed a tendency towards increased MCP-1/CCL2
transcription after warming to pyrexia, though not to signif-
icance, that also plays a role in regulating leukocyte traffick-
ing (data not shown).

IL-6 has been shown to have cardioprotective effects [29],
but chronic or excessive expression of IL-6 can be fatal and
has been shown to cause heart failure in a rodent model
[30]. Additionally, IL-6 along with IL-1β and TNF-α has
been known to act as endogenous pyrogens, thus contribut-
ing to the induction of fever [31]. We observed that cooling
effectively maintained IL-6 transcription at normoxia control
levels at all investigated time points and throughout rewarm-
ing to 37°C. Therefore, attenuating IL-6 expression in cardi-
omyocytes may be an essential strategy to minimize the
systemic inflammatory response often referred to as rebound
pyrexia in hypothermia-treated cardiac arrest patients.

SOCS-3 is a member of the STAT-induced STAT
inhibitor (SSI) family that functions as a negative regulator
of cytokine signaling to control immune homeostasis in both
physiological and pathological conditions. It therefore plays

an important role in restraining inflammation, yet allowing
optimal immune response against infections. However, sim-
ilar to the findings of Nagata et al., we also observed signifi-
cant increases in TNF-α, IL-6, and IL-1β transcriptions
relative to normoxia control that correlated with significant
increases in SOCS-3 in the OGD/R groups upon warming
to pyrexia [20], whereas previously cooled OGD/R groups
rewarmed to normothermia did not show this inflammatory
response and even resulted in attenuated IL-1β expression.

Limitations of our study lie in the use of a cardiomyocyte
monoculture model, as our focus was to investigate the
specific contribution of resident cardiomyocytes to the
inflammatory response. Of course the interaction between
leukocytes, cardiac fibroblasts, and resident cardiomyocytes
plays an important role in the inflammatory response after
IR-induced cardiac injury and warrants further investigation.
Moreover, the release of cardiac-specific DAMPs from
necrotic myocardial cells was not addressed in this study
but is currently under investigation in a primary murine car-
diomyocyte model in our lab.

5. Conclusion

Targeted temperature management is an effective therapeutic
strategy for ischemia/reperfusion injury, but preventing post-
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Figure 6: Synopsis of the sterile inflammatory response and myocardial apoptotic cell death induced by ischemia-reperfusion injury,
hypothermia, and post-TTM rebound pyrexia in the HL-1 cardiomyocytes.
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TTM rebound pyrexia is crucial to minimizing the sterile
inflammatory response and subsequent cardiomyocyte apo-
ptosis after an acute ischemia-reperfusion injury. Optimiza-
tion of the TTM protocol for postcardiac arrest care is
currently a topic of great research interest. Although most
efforts are focused on the application of TTM, including
optimal cooling temperature, rates of cooling and subse-
quent rewarming, practical methods of cooling that allow
for adequate and consistent temperature control, and eligi-
ble patient cohort, preventing the onset of post-TTM
rebound pyrexia warrants further investigation. Our find-
ings show that maintaining a period of post-TTM normo-
thermia, referred to as “therapeutic normothermia” by
Leary et al., is effective in preventing secondary apoptosis-
driven myocardial cell death, thus minimizing the infarct
area and further release of various mediators of the innate
sterile inflammatory response after an acute ischemia/re-
perfusion injury.
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