71 research outputs found

    Preparing Primary Schools in Uganda for the ‘Next New Normal’ Using a Comparison to India

    Get PDF
    The corona virus 2019 (COVID-19) pandemic caused the postponement of interpersonal educational activities amongst primary school students in Uganda, especially after-school activities in the fields of vocational training and sports. This virus was first identified in Entebbe, three days after the first national lockdown was enforced on 20th March 2020. The lockdown banned all gatherings and travel in order to minimize the spread of this highly contagious virus. This lockdown forced all educational institutions to close for approximately 83 weeks/22 months. They were allowed to re-open on 10th January 2022. The roughly two-year study suspension disrupted students’ progress but the most adversely affected person was the rural primary school girl.In India, the first national lockdown was enforced on 22nd March 2020 and ran for 81 weeks/22 months. It was lifted on 18th April but subsequent lockdowns were enforced because of the virus resurgence until 31st December, 2021.Both countries had similar lockdown periods but dissimilar challenges and outcomes. During that lockdown, educational institutions in Uganda and India tried to use or used innovative virtual learning platforms to teach, examine and promote their students virtually because physical contact was banned. These experiences and many others forced and enlightened both countries to perform their regular tasks/work under the COVID-19 pandemic lockdown. It was dubbed as ‘the new normal’. Keywords:Uganda, India, national lockdown, primary schools, after-school activities, open distance learning platforms DOI: 10.7176/JEP/13-36-05 Publication date: December 31st 2022

    Bili Inhibits Wnt/β-Catenin Signaling by Regulating the Recruitment of Axin to LRP6

    Get PDF
    BACKGROUND: Insights into how the Frizzled/LRP6 receptor complex receives, transduces and terminates Wnt signals will enhance our understanding of the control of the Wnt/ss-catenin pathway. METHODOLOGY/PRINCIPAL FINDINGS: In pursuit of such insights, we performed a genome-wide RNAi screen in Drosophila cells expressing an activated form of LRP6 and a beta-catenin-responsive reporter. This screen resulted in the identification of Bili, a Band4.1-domain containing protein, as a negative regulator of Wnt/beta-catenin signaling. We found that the expression of Bili in Drosophila embryos and larval imaginal discs significantly overlaps with the expression of Wingless (Wg), the Drosophila Wnt ortholog, which is consistent with a potential function for Bili in the Wg pathway. We then tested the functions of Bili in both invertebrate and vertebrate animal model systems. Loss-of-function studies in Drosophila and zebrafish embryos, as well as human cultured cells, demonstrate that Bili is an evolutionarily conserved antagonist of Wnt/beta-catenin signaling. Mechanistically, we found that Bili exerts its antagonistic effects by inhibiting the recruitment of AXIN to LRP6 required during pathway activation. CONCLUSIONS: These studies identify Bili as an evolutionarily conserved negative regulator of the Wnt/beta-catenin pathway

    Casein Kinase 1 Proteomics Reveal Prohibitin 2 Function in Molecular Clock

    Get PDF
    Throughout the day, clock proteins synchronize changes in animal physiology (e.g., wakefulness and appetite) with external cues (e.g., daylight and food). In vertebrates, both casein kinase 1 delta and epsilon (CK1δ and CK1ξ) regulate these circadian changes by phosphorylating other core clock proteins. In addition, CK1 can regulate circadian-dependent transcription in a non-catalytic manner, however, the mechanism is unknown. Furthermore, the extent of functional redundancy between these closely related kinases is debated. To further advance knowledge about CK1δ and CK1ξ mechanisms of action in the biological clock, we first carried out proteomic analysis of both kinases in human cells. Next, we tested interesting candidates in a cell-based circadian readout which resulted in the discovery of PROHIBITIN 2 (PHB2) as a modulator of period length. Decreasing the expression of PHB2 increases circadian-driven transcription, thus revealing PHB2 acts as an inhibitor in the molecular clock. While stable binding of PHB2 to either kinase was not detected, knocking down CK1ξ expression increases PHB2 protein levels and, unexpectedly, knocking down CK1δ decreases PHB2 transcript levels. Thus, isolating CK1 protein complexes led to the identification of PHB2 as an inhibitor of circadian transcription. Furthermore, we show that CK1δ and CK1ξ differentially regulate the expression of PHB2

    Lypd6 Enhances Wnt/β-Catenin Signaling by Promoting Lrp6 Phosphorylation in Raft Plasma Membrane Domains

    Get PDF
    Wnt/beta-catenin signaling plays critical roles during embryogenesis, tissue homeostasis, and regeneration. How Wnt-receptor complex activity is regulated is not yet fully understood. Here, we identify the Ly6 family protein LY6/PLAUR domain-containing 6 (Lypd6) as a positive feedback regulator of Wnt/beta-catenin signaling. lypd6 enhances Wnt signaling in zebrafish and Xenopus embryos and in mammalian cells, and it is required for wnt8-mediated patterning of the mesoderm and neuroectoderm during zebrafish gastrulation. Lypd6 is GPI anchored to the plasma membrane and physically interacts with the Wnt receptor Frizzled8 and the coreceptor Lrp6. Biophysical and biochemical evidence indicates that Lypd6 preferentially localizes to raft membrane domains, where Lrp6 is phosphorylated upon Wnt stimulation. lypd6 knockdown or mislocalization of the Lypd6 protein to nonraft membrane domains shifts Lrp6 phosphorylation to these domains and inhibits Wnt signaling. Thus, Lypd6 appears to control Lrp6 activation specifically in membrane rafts, which is essential for downstream signaling.The GenBank accession number for the partial Xenopus laevis lypd6 complementary DNA reported in this paper is KF042353

    Werner Syndrome Helicase Is Required for the Survival of Cancer Cells with Microsatellite Instability

    No full text
    Summary: Werner syndrome protein (WRN) is a RecQ enzyme involved in the maintenance of genome integrity. Germline loss-of-function mutations in WRN led to premature aging and predisposition to cancer. We evaluated synthetic lethal (SL) interactions between WRN and another human RecQ helicase, BLM, with DNA damage response genes in cancer cell lines. We found that WRN was SL with a DNA mismatch repair protein MutL homolog 1, loss of which is associated with high microsatellite instability (MSI-H). MSI-H cells exhibited increased double-stranded DNA breaks, altered cell cycles, and decreased viability in response to WRN knockdown, in contrast to microsatellite stable (MSS) lines, which tolerated depletion of WRN. Although WRN is the only human RecQ enzyme with a distinct exonuclease domain, only loss of helicase activity drives the MSI SL interaction. This SL interaction in MSI cancer cells positions WRN as a relevant therapeutic target in patients with MSI-H tumors. : Biological Sciences; Cancer; Molecular Biology Subject Areas: Biological Sciences, Cancer, Molecular Biolog
    • …
    corecore