12 research outputs found
Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic. Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-sex-location-year-specific deaths by the standard life expectancy at the age that death occurred. DALYs were calculated by summing YLDs and YLLs. HALE estimates were produced using YLDs per capita and age-specific mortality rates by location, age, sex, year, and cause. 95% uncertainty intervals (UIs) were generated for all final estimates as the 2·5th and 97·5th percentiles values of 500 draws. Uncertainty was propagated at each step of the estimation process. Counts and age-standardised rates were calculated globally, for seven super-regions, 21 regions, 204 countries and territories (including 21 countries with subnational locations), and 811 subnational locations, from 1990 to 2021. Here we report data for 2010 to 2021 to highlight trends in disease burden over the past decade and through the first 2 years of the COVID-19 pandemic. Findings: Global DALYs increased from 2·63 billion (95% UI 2·44–2·85) in 2010 to 2·88 billion (2·64–3·15) in 2021 for all causes combined. Much of this increase in the number of DALYs was due to population growth and ageing, as indicated by a decrease in global age-standardised all-cause DALY rates of 14·2% (95% UI 10·7–17·3) between 2010 and 2019. Notably, however, this decrease in rates reversed during the first 2 years of the COVID-19 pandemic, with increases in global age-standardised all-cause DALY rates since 2019 of 4·1% (1·8–6·3) in 2020 and 7·2% (4·7–10·0) in 2021. In 2021, COVID-19 was the leading cause of DALYs globally (212·0 million [198·0–234·5] DALYs), followed by ischaemic heart disease (188·3 million [176·7–198·3]), neonatal disorders (186·3 million [162·3–214·9]), and stroke (160·4 million [148·0–171·7]). However, notable health gains were seen among other leading communicable, maternal, neonatal, and nutritional (CMNN) diseases. Globally between 2010 and 2021, the age-standardised DALY rates for HIV/AIDS decreased by 47·8% (43·3–51·7) and for diarrhoeal diseases decreased by 47·0% (39·9–52·9). Non-communicable diseases contributed 1·73 billion (95% UI 1·54–1·94) DALYs in 2021, with a decrease in age-standardised DALY rates since 2010 of 6·4% (95% UI 3·5–9·5). Between 2010 and 2021, among the 25 leading Level 3 causes, age-standardised DALY rates increased most substantially for anxiety disorders (16·7% [14·0–19·8]), depressive disorders (16·4% [11·9–21·3]), and diabetes (14·0% [10·0–17·4]). Age-standardised DALY rates due to injuries decreased globally by 24·0% (20·7–27·2) between 2010 and 2021, although improvements were not uniform across locations, ages, and sexes. Globally, HALE at birth improved slightly, from 61·3 years (58·6–63·6) in 2010 to 62·2 years (59·4–64·7) in 2021. However, despite this overall increase, HALE decreased by 2·2% (1·6–2·9) between 2019 and 2021. Interpretation: Putting the COVID-19 pandemic in the context of a mutually exclusive and collectively exhaustive list of causes of health loss is crucial to understanding its impact and ensuring that health funding and policy address needs at both local and global levels through cost-effective and evidence-based interventions. A global epidemiological transition remains underway. Our findings suggest that prioritising non-communicable disease prevention and treatment policies, as well as strengthening health systems, continues to be crucially important. The progress on reducing the burden of CMNN diseases must not stall; although global trends are improving, the burden of CMNN diseases remains unacceptably high. Evidence-based interventions will help save the lives of young children and mothers and improve the overall health and economic conditions of societies across the world. Governments and multilateral organisations should prioritise pandemic preparedness planning alongside efforts to reduce the burden of diseases and injuries that will strain resources in the coming decades. Funding: Bill & Melinda Gates Foundation
Recommended from our members
Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
BACKGROUND Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. METHODS The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model-a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates-with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality-which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. FINDINGS The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2-100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1-290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1-211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4-48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3-37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7-9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. INTERPRETATION Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. FUNDING Bill & Melinda Gates Foundation
Pharmacokinetics, safety, and tolerability of siponimod (BAF312) in subjects with severe renal impairment: A single-dose, open-label, parallel-group study
Objective
To investigate the pharmacokinetics (PK), safety, and tolerability of siponimod and selected metabolites (M3 and M5) in subjects with varying degrees of renal impairment (RI) compared to demographically matched healthy subjects (HS).
Methods
The study enrolled subjects with severe RI (n=8) and matched HS (n=8). Subjects with moderate and mild RI were to be enrolled only if interim analysis showed ≥50% increase in maximum plasma concentration (Cmax) or area under the curve (AUC) of total and/or unbound siponimod in severe RI subjects versus HS. All subjects received single oral dose of siponimod 0.25 mg on Day 1; PK and safety were evaluated during the follow-up (~13 days).
Results
PK of siponimod was marginally affected in severe RI subjects versus HS: Cmax decreased by 8% and AUClast and AUCinf increased by 23% and 24%, respectively. Siponimod plasma unbound (u) fraction was 7% higher in the severe RI subjects versus HS. Cmax(u) was comparable while AUClast(u) and AUCinf(u) increased by 32% and 33%, respectively, compared to HS. M3 exposure was similar (Cmax decreased by 9%; AUClast and AUCinf increased by 11%) and M5 exposure was slightly lower (Cmax decreased by 26%; AUClast decreased by 16%) in subjects with severe renal impairment compared with matched HS. No adverse events were reported during this study.
Conclusions
Changes in the plasma exposure of total and unbound siponimod and metabolites M3 and M5 were not considered to be clinically relevant. Further investigation of PK in subjects with mild and moderate RI was not warranted
Pharmacokinetics, safety, and tolerability of siponimod (BAF312) in subjects with different levels of hepatic impairment: a single-dose, open-label, parallel-group study
This open-label, parallel-group study assessed the pharmacokinetics (PK), safety and tolerability of siponimod and its metabolites (M3 and M5) in subjects with mild, moderate and severe hepatic impairment (HI) compared to demographically-matched healthy subjects (HS). The study enrolled 40 subjects (each HI group, n=8; HS group, n=16). A staged design was employed starting with the enrollment of subjects with mild HI, followed by moderate and severe HI groups. All subjects received a single oral dose of 0.25 mg siponimod on Day 1; PK and safety data were collected during the 21-day follow-up. No significant differences were observed in the plasma exposure of siponimod in mild, moderate, and severe HI groups vs. HS: Cmax changed by 16%, -13%, and -16%; AUC by 5%, -13%, and 15%, respectively. The unbound siponimod PK parameters vs. HS were similar in mild HI, and increased in the moderate (Cmax, 15%; AUC, 17%) and severe HI groups (Cmax, 11%; AUC, 50%). Exposure of M3 and M5 also showed 2-5 fold increase particularly in the moderate and severe HI groups vs HS. There were no clinically relevant safety findings. These results do not warrant any dose adjustments of siponimod in subjects with HI
Cardiac Effects of Siponimod (BAF312) Re-initiation after Variable Periods of Drug Discontinuation in Healthy Subjects
Purpose The goal of this study was to investigate the effect of siponimod treatment re-initiation on the initial negative chronotropic effects and cardiac rhythm after variable drug discontinuation periods. Methods This partially double-blind, randomized, placebo-controlled study was conducted in healthy subjects. Siponimod doses (0.5-4.0 mg) and placebo were evaluated in combination with drug discontinuation periods ranging from 48 to 192 hours. Twelve-lead Holter ECGs were performed from 1.5 hours before until 24 hours after single-dose re-initiation. Atrioventricular blocks (AVBs) and sinus pauses (RR >2 seconds) were categorized according to dose level, discontinuation period, and resting and nonresting hours. Findings Of the enrolled 138 subjects, 117 were evaluated. Demographic and baseline characteristics were comparable between the treatment groups. Subjects rechallenged at the combination of 4 mg/192 hours (highest investigated dose and longest discontinuation period [7 missed doses]) exhibited the highest decrease in pooled, placebo-adjusted heart rate (HR) of 14.53 beats/min. The magnitude of the negative chronotropic effect of siponimod re-initiation was dependent on both dose and duration of treatment discontinuation. Regardless of the dose, the placebo-adjusted HR reduction at re-initiation of drug treatment after up to 96 hours of drug discontinuation remained <10 beats/min. Except for 1 outlier for HR decrease under the 96-hour/placebo combination, no outliers were observed for any combination up to and including the 96-hour discontinuation periods. Most of the AVBs and sinus pauses were observed during nocturnal hours concurrent with increased vagal tone. All detected AVBs and sinus pauses were asymptomatic and not considered clinically relevant. Implications Siponimod could be safely re-initiated without retitration after drug discontinuation periods up to 96 hours. Retitration is required if patients miss ≥4 consecutive doses
AQW051, a novel, potent and selective α7 nicotinic acetylcholine receptor partial agonist: Pharmacological characterization and phase I evaluation
BACKGROUND AND PURPOSE: Activation of the α7 nicotinic acetylcholine receptor (nAChR) is considered an attractive target for the treatment of cognitive impairment associated with neurological disorders. Here we describe the novel α7-nAChR agonist AQW051 as a promising drug candidate for this indication.
EXPERIMENTAL APPROACH: AQW051 was functionally characterized in vitro and cognitive effects evaluated in rodent behavioural models. Pharmacokinetics and tolerability were evaluated in three phase I placebo-controlled studies in 180 healthy subjects.
KEY RESULTS: In vitro, AQW051 bound with high affinity to α7-nAChR and stimulated calcium influx in cells recombinantly expressing the human α7-nAChR. In vivo, AQW051 demonstrated good oral bioavailability and rapid penetration into the rodent brain. AQW051 administered over a broad dose range facilitated learning/memory performance in the object recognition and social recognition test in mice and the water maze model in aged rats. Clinically, AQW051 was well tolerated in healthy young and elderly subjects, with an adverse event (AE) profile comparable with placebo. No serious AEs were reported and all AEs were either mild or moderate in severity at single oral doses up to 200 mg and multiple daily doses up to 75 mg. Once-daily oral administration of AQW051 resulted in continuous exposure and a 2-3-fold accumulation compared with steady state was achieved by 1 week.
CONCLUSIONS AND IMPLICATIONS: These data support further development of AQW051 as a cognitive-enhancing agent, for example in Alzheimer's disease or schizophrenia