58 research outputs found
Motion corrected 3D reconstruction of the fetal thorax from prenatal MRI
In this paper we present a semi-automatic method for analysis of the fetal thorax in genuine three-dimensional volumes. After one initial click we localize the spine and accurately determine the volume of the fetal lung from high resolution volumetric images reconstructed from motion corrupted prenatal Magnetic Resonance Imaging (MRI). We compare the current state-of-the-art method of segmenting the lung in a slice-by-slice manner with the most recent multi-scan reconstruction methods. We use fast rotation invariant spherical harmonics image descriptors with Classification Forest ensemble learning methods to extract the spinal cord and show an efficient way to generate a segmentation prior for the fetal lung from this information for two different MRI field strengths. The spinal cord can be segmented with a DICE coefficient of 0.89 and the automatic lung segmentation has been evaluated with a DICE coefficient of 0.87. We evaluate our method on 29 fetuses with a gestational age (GA) between 20 and 38 weeks and show that our computed segmentations and the manual ground truth correlate well with the recorded values in literature
Recommended from our members
Biweekly Versus Monthly Hyperimmune Globulin Therapy for Primary Cytomegalovirus Infection in Pregnancy.
Primary cytomegalovirus (CMV) infection during pregnancy is associated with an increased risk of congenital CMV (cCMV). Hyperimmune globulin (HIG) therapy has been proposed as a potential prophylaxis to reduce maternal-fetal transmission. Data on whether the administration of HIG every 2 weeks offers benefits over HIG administration every 4 weeks are lacking. This was a retrospective analysis including pregnant women with primary CMV infection diagnosed in the first or early second trimester between 2010 and 2022 treated with HIG every 4 weeks (300 IE HIG per kg) or every 2 weeks (200 IE HIG per kg), respectively. In total, 36 women (4 weeks: n = 26; 2 weeks: n = 10) and 39 newborns (4 weeks: n = 29; 2 weeks: n = 10) were included. The median gestational age at the first HIG administration was 13.1 weeks. There was no significant difference in the cCMV rates between the women who received HIG every 4 versus every 2 weeks (n = 8/24 [33.3%] vs. 3/10 [30.0%]; p = 0.850). An abnormal fetal ultrasound was present in three fetuses and fetal magnetic resonance imaging (MRI) anomalies in four fetuses were related to cCMV infection, with no significant difference in the frequency between the two groups. A larger study will be needed to determine whether HIG administration every 2 instead of every 4 weeks improves the maternal-fetal transmission rates
Sporadic Creutzfeldt-Jakob disease VM1: phenotypic and molecular characterization of a novel subtype of human prion disease
The methionine (M)-valine (V) polymorphic codon 129 of the prion protein gene (PRNP) plays a central role in both susceptibility and phenotypic expression of sporadic Creutzfeldt-Jakob diseases (sCJD). Experimental transmissions of sCJD in humanized transgenic mice led to the isolation of five prion strains, named M1, M2C, M2T, V2, and V1, based on two major conformations of the pathological prion protein (PrPSc, type 1 and type 2), and the codon 129 genotype determining susceptibility and propagation efficiency. While the most frequent sCJD strains have been described in codon 129 homozygosis (MM1, MM2C, VV2) and heterozygosis (MV1, MV2K, and MV2C), the V1 strain has only been found in patients carrying VV. We identified six sCJD cases, 4 in Catalonia and 2 in Italy, carrying MV at PRNP codon 129 in combination with PrPSc type 1 and a new clinical and neuropathological profile reminiscent of the VV1 sCJD subtype rather than typical MM1/MV1. All patients had a relatively long duration (mean of 20.5 vs. 3.5 months of MM1/MV1 patients) and lacked electroencephalographic periodic sharp-wave complexes at diagnosis. Distinctive histopathological features included the spongiform change with vacuoles of larger size than those seen in sCJD MM1/MV1, the lesion profile with prominent cortical and striatal involvement, and the pattern of PrPSc deposition characterized by a dissociation between florid spongiform change and mild synaptic deposits associated with coarse, patch-like deposits in the cerebellar molecular layer. Western blot analysis of brain homogenates revealed a PrPSc type 1 profile with physicochemical properties reminiscent of the type 1 protein linked to the VV1 sCJD subtype. In summary, we have identified a new subtype of sCJD with distinctive clinicopathological features significantly overlapping with those of the VV1 subtype, possibly representing the missing evidence of V1 sCJD strain propagation in the 129MV host genotype
Sporadic Creutzfeldt-Jakob disease VM1: phenotypic and molecular characterization of a novel subtype of human prion disease
The methionine (M)-valine (V) polymorphic codon 129 of the prion protein gene (PRNP) plays a central role in both susceptibility and phenotypic expression of sporadic Creutzfeldt-Jakob diseases (sCJD). Experimental transmissions of sCJD in humanized transgenic mice led to the isolation of five prion strains, named M1, M2C, M2T, V2, and V1, based on two major conformations of the pathological prion protein (PrPSc, type 1 and type 2), and the codon 129 genotype determining susceptibility and propagation efficiency. While the most frequent sCJD strains have been described in codon 129 homozygosis (MM1, MM2C, VV2) and heterozygosis (MV1, MV2K, and MV2C), the V1 strain has only been found in patients carrying VV. We identified six sCJD cases, 4 in Catalonia and 2 in Italy, carrying MV at PRNP codon 129 in combination with PrPSc type 1 and a new clinical and neuropathological profile reminiscent of the VV1 sCJD subtype rather than typical MM1/MV1. All patients had a relatively long duration (mean of 20.5 vs. 3.5 months of MM1/MV1 patients) and lacked electroencephalographic periodic sharp-wave complexes at diagnosis. Distinctive histopathological features included the spongiform change with vacuoles of larger size than those seen in sCJD MM1/MV1, the lesion profile with prominent cortical and striatal involvement, and the pattern of PrPSc deposition characterized by a dissociation between florid spongiform change and mild synaptic deposits associated with coarse, patch-like deposits in the cerebellar molecular layer. Western blot analysis of brain homogenates revealed a PrPSc type 1 profile with physicochemical properties reminiscent of the type 1 protein linked to the VV1 sCJD subtype. In summary, we have identified a new subtype of sCJD with distinctive clinicopathological features significantly overlapping with those of the VV1 subtype, possibly representing the missing evidence of V1 sCJD strain propagation in the 129MV host genotype
Brain structural and functional asymmetry in human situs inversus totalis
Magnetic resonance imaging was used to investigate brain structural and functional asymmetries in 15 participants with complete visceral reversal (situs inversus totalis, SIT). Language-related brain structural and functional lateralization of SIT participants, including peri-Sylvian gray and white matter asymmetries and hemispheric language dominance, was similar to those of 15 control participants individually matched for sex, age, education, and handedness. In contrast, the SIT cohort showed reversal of the brain (Yakovlevian) torque (occipital petalia and occipital bending) compared to the control group. Secondary findings suggested different asymmetry patterns between SIT participants with (n = 6) or without (n = 9) primary ciliary dyskinesia (PCD, also known as Kartagener syndrome) although the small sample sizes warrant cautious interpretation. In particular, reversed brain torque was mainly due to the subgroup with PCD-unrelated SIT and this group also included 55% left handers, a ratio close to a random allocation of handedness. We conclude that complete visceral reversal has no effect on the lateralization of brain structural and functional asymmetries associated with language, but seems to reverse the typical direction of the brain torque in particular in participants that have SIT unrelated to PCD. The observed differences in asymmetry patterns of SIT groups with and without PCD seem to suggest that symmetry breaking of visceral laterality, brain torque, and language dominance rely on different mechanisms
Multi-Center Fetal Brain Tissue Annotation (FeTA) Challenge 2022 Results
Segmentation is a critical step in analyzing the developing human fetal
brain. There have been vast improvements in automatic segmentation methods in
the past several years, and the Fetal Brain Tissue Annotation (FeTA) Challenge
2021 helped to establish an excellent standard of fetal brain segmentation.
However, FeTA 2021 was a single center study, and the generalizability of
algorithms across different imaging centers remains unsolved, limiting
real-world clinical applicability. The multi-center FeTA Challenge 2022 focuses
on advancing the generalizability of fetal brain segmentation algorithms for
magnetic resonance imaging (MRI). In FeTA 2022, the training dataset contained
images and corresponding manually annotated multi-class labels from two imaging
centers, and the testing data contained images from these two imaging centers
as well as two additional unseen centers. The data from different centers
varied in many aspects, including scanners used, imaging parameters, and fetal
brain super-resolution algorithms applied. 16 teams participated in the
challenge, and 17 algorithms were evaluated. Here, a detailed overview and
analysis of the challenge results are provided, focusing on the
generalizability of the submissions. Both in- and out of domain, the white
matter and ventricles were segmented with the highest accuracy, while the most
challenging structure remains the cerebral cortex due to anatomical complexity.
The FeTA Challenge 2022 was able to successfully evaluate and advance
generalizability of multi-class fetal brain tissue segmentation algorithms for
MRI and it continues to benchmark new algorithms. The resulting new methods
contribute to improving the analysis of brain development in utero.Comment: Results from FeTA Challenge 2022, held at MICCAI; Manuscript
submitted. Supplementary Info (including submission methods descriptions)
available here: https://zenodo.org/records/1062864
Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI): A Prospective Longitudinal Observational Study
BACKGROUND: Current classification of traumatic brain injury (TBI) is suboptimal, and management is based on weak evidence, with little attempt to personalize treatment. A need exists for new precision medicine and stratified management approaches that incorporate emerging technologies. OBJECTIVE: To improve characterization and classification of TBI and to identify best clinical care, using comparative effectiveness research approaches. METHODS: This multicenter, longitudinal, prospective, observational study in 22 countries across Europe and Israel will collect detailed data from 5400 consenting patients, presenting within 24 hours of injury, with a clinical diagnosis of TBI and an indication for computed tomography. Broader registry-level data collection in approximately 20 000 patients will assess generalizability. Cross sectional comprehensive outcome assessments, including quality of life and neuropsychological testing, will be performed at 6 months. Longitudinal assessments will continue up to 24 months post TBI in patient subsets. Advanced neuroimaging and genomic and biomarker data will be used to improve characterization, and analyses will include neuroinformatics approaches to address variations in process and clinical care. Results will be integrated with living systematic reviews in a process of knowledge transfer. The study initiation was from October to December 2014, and the recruitment period was for 18 to 24 months. EXPECTED OUTCOMES: Collaborative European NeuroTrauma Effectiveness Research in TBI should provide novel multidimensional approaches to TBI characterization and classification, evidence to support treatment recommendations, and benchmarks for quality of care. Data and sample repositories will ensure opportunities for legacy research. DISCUSSION: Comparative effectiveness research provides an alternative to reductionistic clinical trials in restricted patient populations by exploiting differences in biology, care, and outcome to support optimal personalized patient management
White and grey matter development in utero assessed using motion-corrected diffusion tensor imaging and its comparison to ex utero measures
Fetal brain diffusion tensor imaging (DTI) offers quantitative analysis of the developing brain. The objective was to 1) quantify DTI measures across gestation in a cohort of fetuses without brain abnormalities using full retrospective correction for fetal head motion 2) compare results obtained in utero to those in preterm infants. Motion-corrected DTI analysis was performed on data sets obtained at 1.5T from 32 fetuses scanned between 21.29 and 37.57 (median 31.86) weeks. Results were compared to 32 preterm infants scanned at 3T between 27.43 and 37.14 (median 33.07) weeks. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were quantified by region of interest measurements and tractography was performed. Fetal DTI was successful in 84% of fetuses for whom there was sufficient data for DTI estimation, and at least one tract could be obtained in 25 cases. Fetal FA values increased and ADC values decreased with age at scan (PLIC FA: p = 0.001; R = 0.469; slope = 0.011; splenium FA: p < 0.001; R = 0.597; slope = 0.019; thalamus ADC: p = 0.001; R = 0.420; slope = - 0.023); similar trends were found in preterm infants. This study demonstrates that stable DTI is feasible on fetuses and provides evidence for normative values of diffusion properties that are consistent with aged matched preterm infants
- …